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Abstract
Genotyping-by-sequencing (GBS) represents a highly cost-effective high-throughput geno-

typing approach. By nature, however, GBS is subject to generating sizeable amounts of

missing data and these will need to be imputed for many downstream analyses. The extent

to which such missing data can be tolerated in calling SNPs has not been explored widely.

In this work, we first explore the use of imputation to fill in missing genotypes in GBS data-

sets. Importantly, we use whole genome resequencing data to assess the accuracy of the

imputed data. Using a panel of 301 soybean accessions, we show that over 62,000 SNPs

could be called when tolerating up to 80%missing data, a five-fold increase over the num-

ber called when tolerating up to 20%missing data. At all levels of missing data examined

(between 20% and 80%), the resulting SNP datasets were of uniformly high accuracy (96–

98%). We then used imputation to combine complementary SNP datasets derived from

GBS and a SNP array (SoySNP50K). We thus produced an enhanced dataset of >100,000

SNPs and the genotypes at the previously untyped loci were again imputed with a high level

of accuracy (95%). Of the >4,000,000 SNPs identified through resequencing 23 accessions

(among the 301 used in the GBS analysis), 1.4 million tag SNPs were used as a reference

to impute this large set of SNPs on the entire panel of 301 accessions. These previously

untyped loci could be imputed with around 90% accuracy. Finally, we used the 100K SNP

dataset (GBS + SoySNP50K) to perform a GWAS on seed oil content within this collection

of soybean accessions. Both the number of significant marker-trait associations and the

peak significance levels were improved considerably using this enhanced catalog of SNPs

relative to a smaller catalog resulting from GBS alone at�20%missing data. Our results

demonstrate that imputation can be used to fill in both missing genotypes and untyped loci

with very high accuracy and that this leads to more powerful genetic analyses.
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Introduction
Next generation sequencing (NGS) has revolutionized plant and animal research in many
ways. Firstly, it has allowed researchers to decode the whole genome of many organisms. Cur-
rently, hundreds of eukaryotic genomes have been sequenced (NCBI, “www.ncbi.nlm.nih.gov/
projects/WGS/WGSprojectlist.cgi”) and, for some species, numerous individuals, cultivars or
accessions of the same species have also been sequenced [1–3]. Next generation sequencing has
also facilitated greatly the development of methods to genotype very large numbers of molecu-
lar markers such as single nucleotide polymorphisms (SNPs). In one such approach, large-
scale sequencing has allowed researchers to probe nucleotide diversity in panels of individuals
to discover polymorphic sites and then to develop genotyping arrays (“SNP chips”) that can
subsequently be used to determine the genotype of an individual line at thousands to millions
of such SNPs [4,5]. In soybean, an example of this approach is the SoySNP50K array that was
constructed to interrogate over 52K SNPs of which 47,337 were found to be polymorphic
among a set of 288 elite cultivars, landraces and wild soybean accessions [6]. Alternatively,
genotyping methods exploiting the power of NGS technologies have also been developed to
simultaneously identify and genotype SNPs. RAD-Seq (Restriction site Associated DNA
Sequencing) and genotyping-by-sequencing (GBS) are two examples of such SNP genotyping
approaches relying on NGS [7,8].

In soybean, GBS has been developed as a rapid and robust approach for reduced-representa-
tion sequencing of multiplexed samples that combines genome-wide molecular marker discov-
ery and genotyping [9]. The flexibility and low cost of GBS makes this an excellent tool for
many applications and research questions in genetics and breeding. Such modern advances
allow for the genotyping of thousands of SNPs, and, in doing so, the probability of identifying
SNPs correlated with traits of interest increases [10]. However, when using approaches such as
GBS that perform a scan or a sampling of the genome, the quantity of missing data can be sub-
stantial. An important question that remains unanswered at this point is the degree to which
missing data can be tolerated and to what extent they affect the accuracy of the imputation
process.

Conceptually, there are two types of missing data in large datasets. The most obvious is
when some individuals are missing a genotype value at a locus that is otherwise successfully
typed in the other individuals of a population. In another situation, which arises when different
datasets (e.g. obtained using different genotyping technologies) are combined, there can be loci
that are not typed at all within a population, i.e. there is no information for a SNP locus in all
individuals of the population except for a few individuals that can be common to both datasets.
The first type of missing data can be termed a “missing genotype” while the second is termed
an “untyped locus”. There has been considerable interest in imputing such missing data based
on the available data [10]. Many tools used in genetic analysis require complete datasets and
there are thus two possibilities: work only with SNP loci devoid of any missing data (thereby
considerably reducing the number of SNPs available) or impute these missing data through
various strategies.

Imputation is the substitution of some value for missing data, in other words, ‘filling in’
missing data with plausible values. Generally, methods of genotype imputation are based on
the concept that SNPs close together on a chromosome are often inherited together. The result-
ing correlations among SNPs are referred to as linkage disequilibrium (LD), or association, in
the genetic literature [11]. Many methods for imputing missing genotypes have been suggested
and tested. Generally, two methodological classes are considered: regression and phasing.

A first approach is to use regression models to impute the missing genotypes by using flank-
ing SNPs as covariates [10]. Regression-based methods face a common problem in variable
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selection; it can be difficult to select which available SNPs should be included as covariates.
One reason for this is that LD patterns are not homogenous across the genome [11]; for exam-
ple, lower LD would be expected among SNPs located in recombination hotspots than those in
low recombination regions (high LD regions). Therefore, fewer SNPs may be useful as covari-
ates in lower LD regions. These limitations made regression methods less attractive and less
accurate.

Phase-based methods consider haplotype structure and common descent patterns [10]. As
humans, animals, and plants are (often) diploid, a genotype is the combination of maternal
and paternal alleles. Alleles close together on a chromosome are typically inherited together in
a whole unit as a haplotype. Phase-based algorithms try to split genotypes at SNPs into haplo-
typic phases. Here, a “phase” is simply an inferred parental haplotype. Once phased, missing
alleles can be estimated from neighboring haplotype alleles through their LD relationship, and
the inferred alleles are then combined to impute the missing genotype. Currently, many popu-
lar genotype imputation methods are phase-based.

In this work, we explored the accuracy and efficiency of different imputation tools for both
the imputation of missing genotypes in the context of GBS and of untyped loci in the context
of combining SNP datasets obtained through different genotyping approaches (GBS, SNP
array and resequencing). Finally, we examined the impact of using such enhanced SNP datasets
in genome-wide association analyses.

Materials and Methods

Samples and SNP datasets
A set of 301 Canadian soybean lines was subjected to GBS analysis (with ApeKI digestion) and
a total of 450 million 100-bp reads (~1.5M reads/line) were processed through our analytical
pipeline that relies on SAMtools to call SNPs as described previously in Sonah et al. [9] and
Sonah et al. [12]. The SoySNP50K iSelect BeadChip [6] has been used to genotype the USDA
Soybean Germplasm Collection [13]. The complete dataset for 19,652 G.max and G. soja
accessions genotyped with 42,508 SNPs are publicly available on Soybase (www.soybase.org).
Of these 19,652 accessions, 25 were in common with the 301 Canadian lines used for GBS.
Finally, on the basis of geographic distribution and genotypic diversity, we chose 23 soybean
(S1 Table) lines from the set of 301 mentioned above to undergo whole genome resequencing
(described below).

DNA extraction and whole genome resequencing. Seeds were planted in individual two-
inch pots containing a single Jiffy peat pellet (Gérard Bourbeau & fils inc. Quebec, Canada).
First trifoliate leaves from 12 day-old plants were harvested and immediately frozen in liquid
nitrogen. Frozen leaf tissue was ground using a Qiagen TissueLyser. DNA was extracted from
approximately 100 mg of ground tissue using the Qiagen Plant DNeasy Mini Kit according to
the manufacturer’s protocol. DNA was quantified on a NanoDrop spectrophotometer. Illu-
mina Paired-End libraries were constructed for DNA samples using the Illumina Tru-seq
DNA Library Prep Kit (Illumina, San Diego CA, USA) following the manufacturer’s instruc-
tions. DNA library quality was verified on an Agilent Bioanalyzer with a High Sensitivity DNA
chip. Samples were sequenced using the Illumina HiSeq 2000 platform at the McGill Univer-
sity-Génome Québec Innovation Center in Montreal, QC, Canada.

Alignment and variant calling. Illumina paired-end reads were aligned using the Bur-
rows-Wheeler Aligner (BWA) [14] onto the soybean reference genome (Williams82) [15]. Var-
iants were called using SAMtools 0.1.18 [16]. BAM files were pooled for variant calling.
Variants were then removed if they had two or more alternative alleles, no observation of the
alternative allele on either forward or reverse reads, an overall quality (QUAL) score of<20, a
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mapping quality (MQ) score<30, a read depth of<2, or were suspected of representing false
heterozygotes (based on unequal read depth of the two alleles). For tag SNP selection, we used
PLINK [17] to calculate linkage disequilibrium (LD) between each pair of SNPs within a sliding
window of 50 SNPs and we removed all but one SNP that were in perfect LD (LD = 1); the
remaining SNPs were deemed tag SNPs.

Imputation methods. We used three software tools to impute missing data: fastPHASE
[18], BEAGLE v4.0 [19], and IMPUTE2 [20]. As recommended by Delaneau, and Marchini
[21] we used SHAPEIT2 [22] to first infer the haplotypes among the set of genotypes studied,
and then used the resulting output to perform the imputation of untyped loci using IMPUTE2.
All three software tools were used to impute missing genotypes while only the last two were
used to impute untyped loci. The parameters for fastPHASE were: fastPHASE –T 20 –E 10 –M
0 –o output_name fastPHASE_input_file. The command line for BEAGLE read as follows for
missing data imputation: java—Xmx5000m—jar unphased = phased.input.bgl missing = 0
niterations = 10 out = out_file, and for untyped genotype imputation: java—Xmx5000m—jar
phased = phased.input.bgl unphased = unphased.input.bgl markers = marker.ids missing = 0
niterations = 10 out = out_file. Finally, the command line for IMPUTE2 was: impute –h pha-
sed_file—l legend_file—g geno_file –m genetic_map_chr�.txt—call_-thresh 0.0—Ne 11418—i
info_file –o out_file. Finally, both BEAGLE and IMPUTE2 were used to assess the impact of
the number of lines composing the reference panel on the accuracy of imputation at untyped
loci.

Genotype accuracy. For the initial estimation of the accuracy of genotype calls in GBS
analysis, we compared the called genotypes at all loci on a single chromosome (Gm03; 3326
SNP loci) for the 23 lines common to both the GBS and WGS datasets. These GBS-derived
genotypes were directly compared with the true genotypes (revealed by WGS) using an in-
house script. Similarly, all imputed genotype calls (initially missing data) on Gm03, following
imputation (three imputation methods, as described above, at the different levels of MaxMD
and MinMAF), were compared with the true genotypes (WGS). To verify that this chromo-
some was representative of the broader genome, we estimated the overall genotype accuracy
(GBS-derived and imputed SNPs) for all chromosomes (Gm01 to Gm20) using BEAGLE only
and at MaxMD�80% and MinMAF = 0.003.

To assess the accuracy of imputation at untyped loci when combining GBS and SoySNP50K
datasets, i.e. when the SoySNP50K data were used as a reference panel to impute genotypes at
loci not common to both datasets we extracted the genotypes at all loci on chromosome Gm03
for three lines (Maple Presto, Mandarin, and Evans) for which WGS, GBS, and SoySNP50K
data were available. Imputed SNP genotypes were compared with the true genotypes revealed
by WGS.

Similarly, to assess the accuracy of imputation at untyped loci that were imputed using the
WGS dataset, we used the WGS SNP data from 22 of the 23 resequenced lines as a reference
panel to impute these SNPs onto the GBS or GBS + SoySNP50K data. The remaining line was
kept for validation of the imputed SNPs. We performed three permutations where a single line
was kept aside to estimate imputation accuracy (S3 Table). We then extracted the genotypes at
all loci on chromosome Gm03 for the remaining line and we directly compared with the true
genotypes.

Genome-wide association study. A subset of 139 soybean lines were used in the GWAS
analysis. Phenotypic data (seed oil content) for these lines were originally described by Sonah
et al. [12]. All the analyses were performed using the Genomic Association and Prediction Inte-
grated Tool (GAPIT) [23]. A general linear model (GLM) was used with or without the covari-
ate P from principal component analysis (PCA) and a kinship matrix was calculated either
using the VanRaden method (K) or the EMMAmethod (K�) to determine relatedness among
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individuals [23]. A multi-locus mixed model (MLMM) incorporating a kinship matrix (K or
K�) along with a P or Q matrix was used to test for marker-trait association [24]. The negative
log(1/p) was used to establish a significance threshold [25, 26].

Results

Factors that affect number of SNPs in GBS analysis
We first explored the impact of two key filtering steps central to the production of SNP catalogs
derived from GBS analysis: the maximal amount of missing data allowed (MaxMD, in %) and
the minimal minor allele frequency (MinMAF). A set of 301 Canadian soybean lines was sub-
jected to GBS analysis and a total of 450 million 100-bp reads (mean of ~1.5M reads/line) were
processed through our analytical pipeline that calls SNPs using Samtools (see materials and
methods for details). Using a minimum of one read to call a genotype, we obtained an initial
catalog of 247,851 SNPs. We then filtered this set of SNPs for both MaxMD (between 0 and
�80% missing data) and for MinMAF (0.003, 0.05 and 0.1). As can be seen in Fig 1A, the
amount of missing data allowed had a very large impact on the number of SNPs retained. At a
MinMAF of 0.003 (i.e. a single line carrying a different allele among 301 lines), the number of
SNPs increased steadily from only 1 (0% missing data) up to 62,643 (�80% missing data). At
the other MinMAF values, SNP numbers similarly increased markedly between 0 and 41,024
(MinMAF = 0.05) and between 0 and 32,035 (MinMAF = 0.1).

As the MaxMD filter only reflects the maximal proportion of missing data that are tolerated
for an individual SNP marker to be retained, it does not accurately reflect the actual mean
amount of missing data that characterizes a SNP dataset. To better capture this, we plotted the
mean proportion of missing data at each of the MaxMD and MinMAF levels described above
(Fig 1B). As can be seen, the proportion of missing data in an entire dataset was hardly affected
by the MinMAF threshold used but was heavily impacted by the chosen MaxMD level. Even at
MaxMD of 80%, the mean amount of missing data was around 50%, while at more stringent
MaxMD levels (e.g. 20%), the mean proportion of missing data became quite low (<10%).

We then examined the distribution of these SNPs based on the amount of missing data (in
successive increments of 10%) at the most permissive MinMAF level (0.003). As can be seen in
Fig 1C, over 13,000 SNPs were called with>70% and�80% missing data, while around 7,000
were called with�10% missing data. Globally, approximately half of the SNPs could be called
with�50% missing data while the other half were called with between 50% and 80% missing
data. We therefore conclude that it is possible to quite significantly increase the number of
called SNPs by allowing for more missing data, but this will only be attractive if these missing
data can be accurately imputed.

Accuracy and efficacy of imputation for missing genotypes
To examine the quality of the SNP data obtained using GBS, we first assessed the accuracy of
the SNP genotypes initially called by GBS, prior to any imputation. To achieve this, we per-
formed whole-genome resequencing on a representative subset of 23 soybean lines at a mean
depth of coverage of 9x (genome coverage of 96%) (S1 Table). A total of 3.6M SNPs were called
among these lines and this dataset was presumed to represent the true genotype at variant posi-
tions. Assessments of the accuracy of called or imputed SNPs were performed on SNPs located
on a single chromosome (Gm03) for all methods at different levels of MaxMD and MinMAF.
At a MaxMD of 80% and MinMAF of 0.003, we found that 98.4% of SNP genotypes called by
our GBS pipeline proved to be identical to the true genotypes. Similar levels of accuracy were
found for called SNPs under all filtering conditions (data not shown).
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In a second step, to estimate the accuracy of imputed SNP data (i.e. formerly missing geno-
types), we performed imputation at all levels of MaxMD and MinMAF on the entire set of 301
lines. Once again, we used the resequencing data as a reference and, as shown in Fig 2A and
detailed in Table 1, we found that imputation accuracy was hardly affected by the chosen
minor allele frequency and only moderately affected by the amount of missing data. Somewhat
surprisingly, the accuracy of imputation actually increased with increasing missing data.
Indeed, while the imputation accuracy was 86% at MaxMD = 20%, it rose steadily to reach 94%
at MaxMD = 80%. Therefore, allowing for a greater amount of missing data not only yielded a
larger number of SNP markers, but this also proved beneficial in terms of the accuracy of
imputed genotypes.

As illustrated above, the proportions of called and imputed SNP genotypes did vary at
different MaxMD levels and thus impacted the overall accuracy of the resulting SNP catalog.
The accuracy of the entire GBS-derived SNP dataset (after imputation) was measured and is
illustrated in Fig 2B and detailed in Table 1. This includes both the SNP genotypes initially
called and those resulting from imputation. Overall genotype accuracy ranged between 96%
(MaxMD = 80%) and 98% (MaxMD = 20%), with hardly any impact of the MinMAF level. To
determine if Gm03 was representative of the entire set of 20 chromosomes, we measured over-
all genotype accuracy for all chromosomes using a single imputation tool (BEAGLE) at a single
level of MaxMD and MinMAF (80% and 0.003, respectively). As shown in S2 Table, imputa-
tion accuracy differed very little between chromosomes, ranging between 95.3% and 96.3%
(mean = 95.84% ± 0.28%).

Finally, although all three software tools performed equally well in terms of accuracy of
imputation, computational speed varied considerably (Table 1). Whereas it took fastPHASE

Fig 1. Impact of missing data andminor allele frequency on the number of SNPs. (a) The number of SNPs (in ‘000’s) is plotted as a function of the
maximal proportion (in %) of missing data tolerated (MaxMD) at three levels of minimal minor allele frequency (MinMAF). (b) Overall mean proportion of
missing data (in %) for datasets obtained at different levels of MaxMD and MinMAF. (c) Distribution of SNPs called at different levels of missing data.

doi:10.1371/journal.pone.0131533.g001
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14h to impute the missing data, BEAGLE completed the task in only 30 minutes. In conclusion,
we find that large amounts of missing data do not have a significant detrimental impact on the
overall accuracy thanks to a highly accurate imputation.

Fig 2. Missing data imputation accuracy. (a) The accuracy of imputed missing data (in %) is plotted
against the proportion of missing data (in %) tolerated (MaxMD) at three levels of minimal minor allele
frequency (MinMAF). (b) Accuracy of overall GBS dataset (in %) after imputation at different levels of MaxMD
and MinMAF.

doi:10.1371/journal.pone.0131533.g002
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Accuracy of imputation at untyped loci
The existence of multiple genotyping approaches offers the opportunity to exploit already
existing haplotype information to further enhance marker density and to facilitate the integra-
tion of data obtained from different genotyping platforms. We first wanted to test whether the
publicly available SoySNP50K array data obtained on 19,562 USDA soybean accessions could
be used to impute additional (“untyped”) SNPs in our GBS-derived catalog of SNPs. In a first
step, we identified 25 accessions common to our set of 301 lines and the USDA collection. By
comparing the SNP data for these common accessions, we found that only 7% of markers
(2,975 of 42,508; at MAF = 0.05) were shared between the GBS and SoySNP50K data. As these
two datasets have a limited overlap, this offered the potential of adding a large number of
untyped SNP loci through imputation. In a second step, we used the SoySNP50K data as a ref-
erence panel to perform imputation of genotypes at the untyped loci in our GBS-derived cata-
log. As shown in Table 2, both BEAGLE and IMPUTE2 performed very well resulting in a high
accuracy of the imputed genotypes (94.9 and 95.3%, respectively). The successful imputation of

Table 1. Accuracy of imputed GBS SNP data and computational speed of three imputation methods at different levels of missing data (MaxMD)
andminor allele frequency (MinMAF).

Missing data imputation accuracy (%)

MinMAF 0.003 MinMAF 0.05 MinMAF 0.1

Method Dataset MaxMD (%) Missing data Overall* Missing data Overall Missing data Overall Computing Time

fastPHASE GBS** 80 93.2 95.8 93.9 96.4 94.1 96.5 14 hours

20 85.6 97.5 86.5 98.1 87.5 98.1

BEAGLE GBS 80 92.9 95.6 94.0 96.5 94.2 96.6 30 minutes

20 85.6 97.5 86.7 98.1 87.6 98.1

IMPUTE2 GBS 80 93.0 95.6 93.5 96.2 94.3 96.6 2 hours

20 86.1 97.5 86.9 98.1 88.1 98.2

Number of SNPs GBS 80 62,643 41,024 32,035

20 12,712 7,152 5,657

* Includes both genotypes originally called by GBS and following imputation

** 301soybean lines

doi:10.1371/journal.pone.0131533.t001

Table 2. Accuracy and computational efficiency of imputation at untyped loci. SNP data from a SNP array (SoySNP50K) or whole-genome resequen-
cing (WGS) were used as a reference to impute missing data at loci that were untyped in an initial dataset (GBS data only or GBS +SoySNP50K data).

Dataset Imputation method Reference panel Untyped loci imputation accuracy (%) Number of markers Computing Time

BEAGLE

GBS Beagle SoySNP50K 94.9 102,175 71 hours

GBS Beagle WGS 80.0 1,414,925 2 hours

GBS+ SoySNP50K Beagle WGS 88.1 1,312,760 2 hours

IMPUTE2

GBS pre-Phasing by SHAPIT2 SoySNP50K 95.3 102,175 91 hours

GBS pre-Phasing by SHAPIT2 WGS 90.0 1,414,925 7 hours

GBS+ SoySNP50K pre-Phasing by SHAPIT2 WGS 91.8 1,312,760 8 hours

doi:10.1371/journal.pone.0131533.t002
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these untyped loci increased the number of SNP markers from 62,643 to 102,175, all the while
maintaining a high level of accuracy of the combined catalog of SNPs.

Another source of haplotype information resided in our WGS data on the subset of 23 rese-
quenced Canadian lines. We therefore tested how useful this information could be in terms of
imputing an even larger set of untyped loci. As described above, a total of 3.6M SNPs were iden-
tified among these 23 lines. We removed all redundant markers, i.e. SNPs that were in perfect
LD with at least one other SNP, thus reducing this reference panel to 1.4M tag SNPs. We then
used BEAGLE and IMPUTE2 for imputation using the SNP data from 22 lines as a reference
panel and keeping the last line (Gaillard) for the estimation of accuracy. As shown in Table 2,
the accuracy of imputed genotypes ranged from as low as 88% to as high as 91.8%. Again, differ-
ences in computation time were observed with BEAGLE proving to be the most efficient.

Finally, to ensure that these results were broadly applicable to the larger set of 23 lines, two
additional permutations were done where a different set of 22 lines was used as a reference
panel and the remaining line (Mandarin or OAC-Lakeview) used for validation. Here again,
the accuracy of imputation proved highly similar to the results described above, ranging
between 87.9% and 92.4% (S3 Table).

To explore the impact of the size of this reference panel on the accuracy of imputed SNPs,
we performed imputation with reference panels representing subsets of 5, 10, 15 or 22 of the 23
lines for which WGS data were available. As can be seen in Fig 3, the accuracy of imputation
was highly affected by the number of lines used in the reference panel. With only 5 lines
included in the reference panel, imputation accuracy was low (60% with BEAGLE and 59%
with IMPUTE2) while it increased (to 88% with BEAGLE and 91.8% with IMPUTE2) using
the maximum number of lines available (22). This suggests that a further increase in the num-
ber of lines included in the reference panel could provide an increase in the accuracy of the
imputation of untyped loci.

Fig 3. Imputation accuracy at untyped SNPs using reference panels of different sizes. SNPs identified
through resequencing of a varying number (5 to 22) soybean accessions were used as a reference panel to
impute the genotypes at these SNP loci in a set of 301 soybean accessions using two different imputation
softwares (BEAGLE and Impute2).

doi:10.1371/journal.pone.0131533.g003
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Power of association test using imputed data
To determine if the enhanced SNP catalogs obtained through imputation could provide
increased power in genome-wide association scans, a subset composed of 139 soybean lines
was used to perform an association analysis for seed oil content. This subset was used because
phenotypic data were available only for these lines. One analysis was conducted using a “basic”
GBS catalog of 7,152 SNPs obtained at MaxMD = 20% and MinMAF = 0.05, while the other
was performed using an enhanced catalog resulting from imputation of missing GBS data (at
MaxMD = 80%) and untyped loci from the SoySNP50K dataset. At MAF�0.05, a total of
83,532 SNPs were retained within this combined dataset. As can be seen in Fig 4A, using the
“basic” SNP catalog, a single SNP marker on Gm19 showed a significant association

Fig 4. Association analysis for seed oil content on chromosome 19 (Gm19) in soybean.Negative log10
p-values from a genome-wide scan are plotted against marker positions on chromosome 19. (a) Association
analysis with the original GBS dataset (~7K SNPs). (b) Association analysis with the enhanced SNP dataset
(>83K SNPs) after combining GBS and SoySNP50K data via imputation.

doi:10.1371/journal.pone.0131533.g004
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(p = 9.6×10−3 and q = 0.09) with seed oil content. In contrast, using the enhanced SNP
catalog (Fig 4B) and a multi-locus mixed-model implementation, a total of 11 markers were
in significant association with this trait despite the fact that the significance threshold increased
from 3.4 to 5.3 (-Log10 p-value). Interestingly, the peak SNP in both cases was the same
(Gm19_41742182), but its association with oil content exhibited a much higher p-value
(3.1×10−7) and lower q-value (0.01). This demonstrates that the increased number of informa-
tive SNP loci, obtained through the imputation of both missing GBS data and untyped loci
from additional sources of SNP haplotype information, can prove highly beneficial in studying
the genetic architecture of complex traits.

Discussion
A first key element to come out of this work is that MaxMD is the most important factor deter-
mining the number of SNPs in GBS analysis. As seen in this study when increasing MaxMD
from 20 to 80% incrementally, the number of SNPs called increased from 12,712 to 62,643. As
previously described, one of the unique features associated with GBS is the generation of highly
incomplete SNP genotype data [27–30], largely due to low coverage sequencing [7]. The
incompleteness could be up to 90% of observations missing [27,31]. As described in several
GBS studies in different species (maize, rice, wheat, soybean, and barley), increasing the
amount of missing data allows to capture more SNPs [32–36]. In the most closely related work,
Jarquin et al. [35] observed a 4-fold increase in the number of SNPs scored in elite soybean
breeding lines when increasing the percentage of missing data allowed from 5% to 80%. These
data confirm that with increasing MaxMD the number of SNPs called through GBS can be
increased substantially.

As described, the number of SNPs is also affected by MinMAF, but the overall proportion
of missing data is hardly affected. The effect of MinMAF on the number of SNPs has been
described in several reports. The number of SNP increases as the minor allele frequency
decreases [34,35,37]. These authors, however, did not show the relation between MinMAF and
the proportion of missing data. In this study, we demonstrated that the proportion of missing
data is largely independent of the chosen MinMAF. In a practical context, however, there is a
more limited scope for using a broad range of MinMAF values, as these are usually constrained
by the need to have an adequate representation of the minor allele state. Typically, in GWAS
and other similar genetic studies, the most frequently encountered MinMAF values are 0.05
and 0.10. In contrast, the amount of missing data that is tolerated is much more variable across
studies and is mostly constrained by the quality of the imputation that can be achieved when
filling in these missing data.

Somewhat counterintuitively, a second key result of this work was that imputation of miss-
ing data was more accurate when performed on datasets with a higher proportion of missing
data. Indeed, at MaxMD = 80%, 94% of SNP genotypes were correctly imputed, whereas at
MaxMD = 20%, the accuracy decreased to 86%. Upon reflection, however, it seems logical that
a larger number of SNP markers (albeit with more missing data) better captures the diversity
of haplotypes that are present within a collection of lines. Increased imputation accuracy at
MaxMD = 80% is likely achieved through increased LD between markers. As documented by
Zheng et al. [38], imputation accuracy increases with increasing density of markers. Soybean
has high levels of LD and the average distance over which LD decays to half of its maximum
value in soybean is substantially longer than that of many plants and animals analyzed to date
(cultivated soybean: ~150 kb; wild soybean: ~75 kb; cultivated rice:<65–180; wild rice<10 kb;
maize:<1 kb; and Arabidopsis thaliana:~3–4 kb; humans<5kb; cattle<10kb) [39–44]. High
levels of LD will decrease the haplotype diversity and as a result facilitate the imputation of

Combining GBS, SNP Array, andWhole-Genome Resequencing via Imputation

PLOS ONE | DOI:10.1371/journal.pone.0131533 July 10, 2015 11 / 16



missing data even over long distances. This suggests that imputation accuracy will vary with
differing levels of LD in different species.

A novel aspect of this work is that the measurement of the accuracy of imputation was
assessed by comparing directly to whole genome resequencing data obtained for a subset of the
lines. In many previous studies, estimates of the accuracy of imputation have been achieved by
masking a subset of the data, imputing these missing genotypes, and then comparing the
imputed genotype with the original data [32,35–37]. For the most part, similarly high levels of
imputation accuracy (92–98%) have been reported with slight differences being observed
between species and types of population (related or unrelated individuals). The advantage of
using resequencing data in this fashion is that we can assess the accuracy of imputation at a
specific level of missing data without having to add to this by masking a subset of the available
data.

Furthermore, although the threshold for retaining a SNP marker at MaxMD = 80% would
suggest a tremendous amount of missing data, we showed that, averaged across all markers
kept at this threshold, a mean of 50% missing data was obtained. When we considered jointly
both the called and imputed markers comprising the final dataset at the various missing data
levels, all were highly accurate (96–98%). This is because the genotypes initially called via GBS
analysis are themselves highly accurate (98.4%). At MaxMD = 20%, these high-quality SNPs
are combined with a small proportion (7%) of SNPs imputed with what we term a “good” accu-
racy (84%). At the other end of the missing data spectrum (MaxMD = 80%), the original set of
GBS-called SNPs is combined with an equal amount (~50%) of SNPs derived from imputation
with an only slightly lower accuracy (94%). Thus, catalogs of called and imputed SNPs retain a
constant, high level of accuracy (~97%) across a broad range of missing data thresholds.

A third key finding of this work is that different and highly complementary marker
datasets can be successfully combined via imputation at untyped loci. We showed that SNP cat-
alogs derived from two high-throughput genotyping techniques, GBS and a SNP array
(SoySNP50K), could be fused through the imputation of a large number of untyped loci.
Because of the different composition of the two initial catalogs, only 7% of the GBS markers
were present in the SoySNP50K set. This is because most (90%) of the SoySNP50K markers are
present in genic regions [6], while most of the GBS markers are present in intergenic regions
(29.8%) or downstream regions (20.2%) [9]. We nonetheless successfully imputed ~40K SNPs
from the array that were absent from the GBS dataset with a high level of accuracy (95%). By
doing so, our catalog of SNPs for the collection of 301 Canadian soybean lines was enhanced
and exceeded 100K SNPs. This analysis shows that GBS and SNP arrays are highly comple-
mentary approaches that can be used in parallel and combined. As the SoySNP50K has been
used by the USDA to characterize close to 20,000 lines of soybean, and because these data are
public, any researcher anywhere in the world can make use of this data, in combination with
their own GBS-derived data obtained at a very low cost, to achieve excellent genome coverage.
Similarly, Pei et al. [45] and Hao et al. [46] used imputation to combine data from two human
genotyping arrays: the Affymetrix 500k SNP chip and the Illumina 550k chip with HapMap
SNPs. They showed that the accuracy of imputation at such untyped loci using various tools
(BEAGLE, fastPHASE, and IPMUTE2) ranged between 92 and 94%. We suggest that the
higher level of imputation accuracy observed in this study compared to the human dataset is
because of the high level of LD in soybean. Again this result suggests that the accuracy of geno-
type imputation at untyped loci will vary in different species because of stark differences in the
extent of LD. Overall, a competing genotyping platforms are developed, it is good to know that
researchers can produce high-quality integrated data sets offering better genome coverage by
such imputation of untyped loci.
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Although all imputation softwares use the same fundamental phenomenon of LD across the
genome, the algorithms employed by each package differ. Likewise, each package offers differ-
ing strengths and weaknesses. Therefore, it is a good idea to use more than one software pack-
age, compare results, and investigate any major discrepancies [47]. To perform genotype
imputation, we used three imputation softwares and found that these showed approximately
the same level of accuracy for missing data imputation. In our view, BEAGLE proved the most
attractive, as it ran very quickly and was the most user friendly. As reference panels for the
imputation of untyped loci become larger and larger, thanks to the increasing availability of
data derived from the resequencing of an increasing number of soybean lines, these tools will
gain further utility. In the context of this work, genotype imputation using the SoySNP50K
data as a reference, both BEAGLE and IMPUTE2 showed the same accuracy (95%). Contrary
to most previous work, we did not assess the accuracy of our imputation through the masking
of a subset of available data. Rather, we performed whole-genome resequencing of a subset (23
lines) from our study population (301 lines) and we compared directly the imputed genotype
and the true genotype. This analysis showed the high level of imputation accuracy.

When performing imputation at a much larger scale, using the 1.4M tag SNPs identified in
our resequencing effort, the accuracy of imputation of this large number of untyped loci was
dependent on the number of lines included in the reference panel. When increasing the num-
ber of lines composing the reference panel from only 5 to a maximum of 22, imputation accu-
racy increased from ~60% to close to 90%. Similarly, in humans, Li et al. [10] showed that
increasing the number of individuals in the reference panel from 60 to 500 improved the accu-
racy of imputation (from 85% to more than 95%, respectively). Interestingly, even a small
number of soybean lines (22) resulted in higher imputation accuracy than was achieved with
60 human samples. As LD is much more extensive in soybean than in humans, this again illus-
trates how important this factor will be in determining imputation accuracy. In future, to
achieve a level of accuracy similar to that seen using the SoySNP50K data (95%), more lines
from the Canadian germplasm collection would likely need to be sequenced.

A final key finding of this work is that the much increased marker coverage achieved
through a better exploitation of available GBS and SoySNP50K data is highly useful in the
genetic dissection of complex traits. The availability of higher density marker coverage enables
researchers to more accurately determine which regions to investigate further and actually nar-
row down each region on which they should perform fine mapping. As illustrated in our analy-
sis of seed oil content, the use of an enhanced SNP catalog (~6 fold larger) allowed us to
capture more significant marker-trait associations around candidate QTLs and the significance
level of such associations was also much higher. These results are consistent with recent work
in both animals and plants that have demonstrated the benefits of marker imputation for
GWAS [48,49]. In the latter case, the authors compared the benefits of marker imputation on
the accuracy of measures of relatedness, the accuracy of genomic selection and the power to
detect QTLs through GWAS. In this work, these authors concluded that “association mapping
profited most from imputing missing values”.

As seen in this study, genotype imputation represents an essential tool in the analysis of
high-throughput genotypic data. One of the most common criticisms regarding GBS is the
presence of a substantial amount of missing data. Our data show that this can largely be over-
come in soybean thanks to highly accurate imputation of missing genotypes. Furthermore,
genotype imputation is particularly useful for combining results across studies that rely on dif-
ferent genotyping platforms. As different groups may use different genotyping tools, it is highly
important to be able to produce integrated datasets that include all such markers to facilitate
the exchange of knowledge and information. It is important to remember, however, that impu-
tation accuracy will be affected by the extent of LD in the population/species studied. Finally, a
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further benefit of such imputation is that it increases the power of individual scans thanks to
more extensive marker coverage. In the coming years, we expect these imputation-based analy-
ses will become a key tool in the analysis of massively parallel shotgun sequence data enabling
geneticists to rapidly deploy these technologies to analyze large samples and dissect the genetic
basis of complex traits.
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