45 research outputs found
Recommended from our members
The regulation of monoamine oxidase: a gene expression by distinct variable number tandem repeats
The monoamine oxidase A (MAOA) uVNTR (upstream variable number tandem repeat) is one of the most often cited examples of a gene by environment interaction (GxE) in relation to behavioral traits. However, MAOA possesses a second VNTR, 500 bp upstream of the uVNTR, which is termed d- or distal VNTR. Furthermore, genomic analysis indicates that there are a minimum of two transcriptional start sites (TSSs) for MAOA, one of which encompasses the uVNTR within the 5′ untranslated region of one of the isoforms. Through expression analysis in semi-haploid HAP1 cell lines genetically engineered in order to knockout (KO) either the uVNTR, dVNTR, or both VNTRs, we assessed the effect of the two MAOA VNTRs, either alone or in combination, on gene expression directed from the different TSSs. Complementing our functional analysis, we determined the haplotype variation of these VNTRs in the general population. The expression of the two MAOA isoforms was differentially modulated by the two VNTRs located in the promoter region. The most extensively studied uVNTR, previously considered a positive regulator of the MAOA gene, did not modulate the expression of what it is considered the canonical isoform, while we found that the dVNTR positively regulated this isoform in our model. In contrast, both the uVNTR and the dVNTR were found to act as negative regulators of the second less abundant MAOA isoform. The haplotype analysis for these two VNTRs demonstrated a bias against the presence of one of the potential variants. The uVNTR and dVNTR differentially affect expression of distinct MAOA isoforms, and thus, their combined profiling offers new insights into gene-regulation, GxE interaction, and ultimately MAOA-driven behavior
Influences of polymorphic variants of DRD2 and SLC6A3 genes, and their combinations on smoking in Polish population
<p>Abstract</p> <p>Background</p> <p>Polymorphisms in dopaminergic genes may influence cigarette smoking by their potential impact on dopamine reward pathway function. <it>A1 </it>allele of <it>DRD2 </it>gene is associated with a reduced dopamine D2 receptor density, and it has been hypothesised that <it>A1 </it>carriers are more vulnerable to smoking. In turn, the 9-repeat allele of dopamine transporter gene (<it>SLC6A3</it>) has been associated with a substantial reduction in dopamine transporter, what might result in the higher level of dopamine in the synaptic cleft, and thereby protective role of this allele from smoking. In the present study we investigated whether polymorphic variants of <it>DRD2 </it>and <it>SLC6A3 </it>genes and their combinations are associated with the smoking habit in the Polish population.</p> <p>Methods</p> <p>Genotyping for <it>Taq</it>I<it>A </it>polymorphism of <it>DRD2 </it>and <it>SLC6A3 </it>VNTR polymorphism was performed in 150 ever-smokers and 158 never-smokers. The association between the smoking status and smoking phenotypes (related to the number of cigarettes smoked daily and age of starting regular smoking), and genotype/genotype combinations was expressed by ORs together with 95% CI. Alpha level of 0.05, with Bonferroni correction whenever appropriate, was used for statistical significance.</p> <p>Results</p> <p>At the used alpha levels no association between <it>DRD2 </it>and <it>SLC6A</it>3 genotypes and smoking status was found. However, <it>A1 </it>allele carriers reported longer abstinence periods on quitting attempts than non-carriers (p = 0.049). The ORs for heavier smoking were 0.38 (0.17-0.88), p = 0.023, and 0.39 (0.17-0.88), p = 0.021 in carriers compared to non-carriers of <it>A1 </it>or <it>*9 </it>allele, respectively, and the OR for this smoking phenotype was 8.68 (2.47-30.46), p = 0.0005 for the <it>A1</it>-/<it>9</it>- genotype combination, relatively to the <it>A1</it>+/<it>9</it>+. Carriers of <it>*9 </it>allele of <it>SLC6A3 </it>had over twice a lower risk to start smoking before the age of 20 years compared to non-carriers (sex-adjusted OR = 0.44; 95% CI: 0.22-0.89; p = 0.0017), and subjects with <it>A1-/9- </it>genotype combination had a higher risk for staring regular smoking before the age of 20 years in comparison to subjects with <it>A1+/9+ </it>genotype combination (sex-adjusted OR = 3.79; 95% CI:1.03-13.90; p = 0.003).</p> <p>Conclusion</p> <p>Polymorphic variants of <it>DRD2 </it>and <it>SLC6A3 </it>genes may influence some aspects of the smoking behavior, including age of starting regular smoking, the level of cigarette consumption, and periods of abstinence. Further large sample studies are needed to verify this hypothesis.</p