3,188 research outputs found

    A Micro-Machined Microphone Based on a Combination of Electret and Field-Effect Transistor

    Get PDF
    Capacitive-type transduction is now widely used in MEMS microphones. However, its sensitivity decreases with reducing size, due to decreasing air gap capacitance. In the present study, we proposed and developed the Electret Gate of Field Effect Transistor (ElGoFET) transduction based on an electret and FET (field-effect-transistor) as a novel mechanism of MEMS microphone transduction. The ElGoFET transduction has the advantage that the sensitivity is dependent on the ratio of capacitance components in the transduction structure. Hence, ElGoFET transduction has high sensitivity even with a smaller air gap capacitance, due to a miniaturization of the transducer. A FET with a floating-gate electrode embedded on a membrane was designed and fabricated and an electret was fabricated by ion implantation with Ga+ ions. During the assembly process between the FET and the electret, the operating point of the FET was characterized using the static response of the FET induced by the electric field due to the trapped positive charge at the electret. Additionally, we evaluated the microphone performance of the ElGoFET by measuring the acoustic response in air using a semi-anechoic room. The results confirmed that the proposed transduction mechanism has potential for microphone applications.open1132Ysciescopu

    Choreo-graphy: The Deinstitutionalisation of the Body and the Event of Writing

    Get PDF
    Choreography is commonly understood as a technical term that describes what the choreographer does in a literal sense: writing the dancing bodies according to a masterā€™s set narrative. However, recent events in contemporary choreography suggest a different possibility of articulating choreography as a technique of offering rather than a technique of domination over other bodies. Through an analysis of some groundbreaking choreographic experiments by Xavier Le Roy, JĆ©rĆ“me Bel, Boris Charmatz, Eszter Salamon, Christine De Smedt, Jan Ritsema, and Anne Teresa De Keersmaeker, which have gained visibility since the late 1990s in the global art scene beyond the Western institution of dance, this thesis aims to theorise this shift in what choreography is and can be. In an attempt to theorise choreography as a technique of offering, this thesis illuminates the relationship between some of the tactical operations in contemporary choreographic experiments and the post-structuralist rethinking of power, institution, the body, subjectivity and knowledge production. Turning to Michel Foucaultā€™s rethinking of power and Jacques RanciĆØreā€™s challenge of the position of mastery, it aims to articulate the tactical deconstructions of the choreographer-master in contemporary choreographic experiments. Borrowing Hannah Arendtā€™s notion of a ā€˜space of appearanceā€™ and Jean-Luc Nancyā€™s rethinking of body, it attempts to articulate how choreography as a spatiotemporal technique offers spaces of appearances for other bodies. This thesis also highlights a different possibility of articulating choreography by positioning it in the critical field called the ā€˜curatorialā€™. Reflecting the contemporary disciplinary crisis in art, where the given methodologies and tools no longer do the job that they used to do, there are increasing demands from cultural producers for different modes of operations in order to open up new critical possibilities of interdisciplinary research. In thinking through Le Roy and De Keersmaekerā€™s ā€˜choreographedā€™ exhibitions, this thesis aims to rethink choreography in terms of the curatorial. This also means to rethink the curatorial in terms of choreography, where both theatre-making and exhibition-making can be rearticulated as a matter of body in relation to other bodies

    A novel approach to fabricate carbon-sphere-intercalated holey graphene electrode for high-energy-density electrochemical capacitors

    Get PDF
    Desirable porous structure and huge ion-accessible surface area are crucial for rapid electronic and ionic pathway electrodes in high-performance graphene-based electrochemical capacitors. However, graphene nanosheets tend to aggregate and restack because of van der Waals interaction among graphene sheets, resulting in the loss of ion-accessible surface area and unsatisfactory electrochemical performance. To resolve this daunting challenge, a novel approach is developed for the self-assembly of holey graphene sheets intercalated with carbon spheres (H-GCS) to obtain freestanding electrodes by using a simple vacuum filtration approach and a subsequent KOH activation process. Through the introduction of carbon spheres as spacers, the restacking of reduced graphene oxide (rGO) sheets during the filtration process is mitigated efficiently. Pores on rGO sheets produced by subsequent KOH activation also provide rapid ionic diffusion kinetics and high ion-accessible electrochemical surface area, both of which favor the formation of electric double-layer capacitance. Furthermore, a higher degree of graphitization of CSs in H-GCS thin film improves the electrical conductivity of the H-GCS electrode. The H-GCS electrode exhibits 207.1 F gāˆ’1 of specific capacitance at a current density of 1 A gāˆ’1 in 6 M KOH aqueous electrolyte. Moreover, the symmetric electrochemical capacitor assembled with H-GCS electrodes and organic electrolyte is capable of delivering a maximum energy density of 29.5 Wh kgāˆ’1 and a power density of 22.6 kW kgāˆ’1

    Oligonol Ameliorates CCl 4

    Get PDF
    Oxidative stress is thought to be a key risk factor in the development of hepatic diseases. Blocking or retarding the reactions of oxidation and the inflammatory process by antioxidants could be a promising therapeutic intervention for prevention or treatment of liver injuries. Oligonol is a low molecular weight polyphenol containing catechin-type monomers and oligomers derived from lychee fruit. In this study, we investigated the anti-inflammatory effect of oligonol on carbon tetrachloride- (CCl4-) induced acute hepatic injury in rats. Oral administration of oligonol (10 or 50ā€‰mg/kg) reduced CCl4-induced abnormalities in liver histology and serum AST and serum ALT levels. Oligonol treatment attenuated the CCl4-induced production of inflammatory mediators, including TNF-Ī±, IL-1Ī², cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) mRNA levels. Western blot analysis showed that oligonol suppressed proinflammatory nuclear factor-kappa B (NF-ĪŗB) p65 activation, phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinases (MAPKs) as well as Akt. Oligonol exhibited strong antioxidative activity in vitro and in vivo, and hepatoprotective activity against t-butyl hydroperoxide-induced HepG2 cells. Taken together, oligonol showed antioxidative and anti-inflammatory effects in CCl4-intoxicated rats by inhibiting oxidative stress and NF-ĪŗB activation via blockade of the activation of upstream kinases including MAPKs and Akt

    Quantum Holographic Encoding in a Two-dimensional Electron Gas

    Full text link
    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures--"molecular holograms"--which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as ~0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm2 and place tens of bits into a single fermionic state.Comment: Published online 25 January 2009 in Nature Nanotechnology; 12 page manuscript (including 4 figures) + 2 page supplement (including 1 figure); supplementary movie available at http://mota.stanford.ed

    Lichen Striatus Occurring after Allogenic Peripheral Blood Stem Cell Transplantation in an Adult with Aplastic Anemia

    Get PDF
    Lichens striatus (LS) is an acquired, self-limiting inflammatory dermatosis that follows the lines of Blaschko. The etiology of the eruption is unknown, but several theories have been proposed with focus on environmental factors, viral infection, cutaneous injury, hypersensitivity, and genetic predisposition. We describe a 19-year-old woman who developed a unilateral linear eruption 17 months after allogenic peripheral blood stem cell transplantation. Histopathology revealed features, which were consistent with LS. To the best of our knowledge, our patient is the first case describing the appearance of LS occurring after allogenic stem cell transplantation. We speculate that this condition represents an unusual form of localized, chronic graft-versus-host disease

    Charge-spin correlation in van der Waals antiferromagenet NiPS3

    Get PDF
    Strong charge-spin coupling is found in a layered transition-metal trichalcogenide NiPS3, a van derWaals antiferromagnet, from our study of the electronic structure using several experimental and theoretical tools: spectroscopic ellipsometry, x-ray absorption and photoemission spectroscopy, and density-functional calculations. NiPS3 displays an anomalous shift in the optical spectral weight at the magnetic ordering temperature, reflecting a strong coupling between the electronic and magnetic structures. X-ray absorption, photoemission and optical spectra support a self-doped ground state in NiPS3. Our work demonstrates that layered transition-metal trichalcogenide magnets are a useful candidate for the study of correlated-electron physics in two-dimensional magnetic material.Comment: 6 pages, 3 figur

    Three-Dimensional Self-Standing and Conductive MnCO3@Graphene/CNT Networks for Flexible Asymmetric Supercapacitors

    Get PDF
    The practical applications of flexible supercapacitor depend strongly on the successful fabrication of advanced electrode materials with high electrochemical performance. Herein, three-dimensional conductive network-based self-standing MnCO3@graphene/CNT hybrid film fabricated through a combination of a hydrothermal method and vacuum filtration for flexible solid-state supercapacitors is reported. The MnCO3@graphene structure is embedded in a CNT network, in which monodispersed MnCO3 nanorod is well confined in graphene nanosheets. This hierarchical structure provides rapid electron/electrolyte ion transport pathways and exhibits excellent structural stability, resulting in rapid kinetics and a long life cycle. The MnCO3@graphene/CNT electrode delivers high specific capacity (467.2 F gā€“1 at 1 A gā€“1). Asymmetric supercapacitor (ASC) devices are assembled with the MnCO3@graphene/CNT film as positive electrode and activated carbon/carbon cloth as negative electrode, which exhibits a high energy density of 27 W h kgā€“1. Remarkably, 93% capacitance retention is obtained for the ASC devices after 6000 cycles
    • ā€¦
    corecore