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ABSTRACT 

The practical applications of flexible supercapacitor depend strongly on the successful 

fabrication of advanced electrode materials with high electrochemical performance. Herein, 

three-dimensional conductive network-based self-standing MnCO3@graphene/CNT hybrid 

film fabricated by combining hydrothermal treatment and vacuum filtration for flexible solid-

state supercapacitors is reported. Ingenious MnCO3@graphene structure is embedded in a 

porous CNT network, in which monodispersed MnCO3 nanorod is well confined in graphene 

nanosheets. This hierarchical structure provides rapid electron/electrolyte ion transport 

pathways and exhibits excellent structural stability, resulting in rapid kinetics and long lifecycle. 

The MnCO3@graphene/CNT electrode delivers a high specific capacity of 467.2 F g−1 at 1 A 

g−1 with 84.3% capacitance retention when the current density is increased from 1 to 10 A g−1. 

An asymmetric supercapacitor (ASC) is fabricated with the MnCO3@graphene/CNT film as 

positive electrode and carbon cloth/activated carbon as negative electrode. The ASC device 

exhibits a high energy density of 27 W h kg−1 at a power density of 1622.7 W kg−1. Remarkably, 

the device exhibits 93% capacitance retention after 6000 cycles.  
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INTRODUCTION 

In recent years, flexible supercapacitor has attracted considerable attention in wearable and 

lightweight electronic devices, such as smartphones, e-readers, and bendable electronic gadgets 

owing to its fast charging–discharging capacity, high power density, long lifespans, and 

remarkable flexibility.1, 2 Besides, flexible supercapacitors offer distinctive advantage of the 

stability and safety because of the use of gel-like solid-state electrolyte, which eliminates the 

safety issue aroused from the leakage of electrolyte and short circuit issues.3 However, flexible 

supercapacitors suffer from the low energy density that hinders their practical application. 

Development of electroactive materials possessing high specific capacitance, superior 

conductivity, good mechanical properties, and high stability is one of the keys for fabricating 

flexible all-solid-state supercapacitor.4  

Electrochemical active MnCO3 is regard as a potential cathode material for supercapacitors 

owing to its redox-richness and low-manganese valence (+2).5, 6 Meanwhile, MnCO3 is earth 

abundant, environmentally friendly, and often utilized as sacrificial template for Mn-based 

materials synthesis. When applied as a supercapacitor electrode, stable rhodochrosite structure 

of MnCO3 could stabilizes the [MnO6] octahedral structure via [CO3] planes during charge–

discharge cycles.5 Zhang et al.7 prepared MnCO3 nanospheres by precipitation method and 

exhibited a specific capacity of 129 F g−1 at 0.15 A g−1. Tang et al.5 reported peanut-like MnCO3 

microcrystals, which exhibited a specific capacitance of 293.7 F g−1 and 71.5% retained 

specific capacitance after 6000 cycles. Nevertheless, critical drawbacks including low specific 

capacitance, limited conductivity, and poor cycling performance, hinder the application of 

MnCO3 as electrode material for supercapacitors.8 Building nanohybrids with carbonaceous 

materials that serve as structural buffer and electroactive material is an effective approach to 

overcome the abovementioned drawbacks.9, 10 In particular, graphene is well-regarded a 

promising carbon matrix because of its remarkable physical properties, such as high 
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conductivity11, superb mechanical flexibility12, and large surface area13. Thus, many reports 

regarding the enhancement of electrochemical performance of MnCO3/graphene composites 

have been reported.14-18 However, the reported MnCO3/graphene composites still suffer from 

the unsatisfactory rate capability and short cycling performance due to the non-intimate contact 

between MnCO3 and graphene.  

Herein, the encapsulation of MnCO3 nanorod within graphene nanosheet (MnCO3@graphene) 

is realized via a cost-effective, one-pot hydrothermal method. Each MnCO3 nanorod is well 

wrapped by graphene rather than being deposited on the surface of graphene or aggregated 

within the graphene sheets. Finally, a lightweight, thin, and self-standing 

MnCO3@graphene/CNT film is fabricated by the vacuum filtration of mixed 

MnCO3@graphene and CNT dispersion. The MnCO3@graphene/CNT electrodes exhibit a 

specific capacitance of 467.2 F g−1 at 1 A g−1, which is approximately 1.5 times higher than 

MnCO3@graphene electrodes (322.1 F g−1 at 1 A g−1). A flexible asymmetric all-solid-state 

supercapacitor (ASC) with a high output cell voltage of 1.8 V is fabricated using such 

MnCO3@graphene/CNT as a positive electrode, carbon cloth/activated carbon (CC/AC) as a 

negative electrode, and Na2SO4/poly(vinyl alcohol) (PVA) as a solid electrolyte. The ASC 

delivers an energy density of 27 W h kg−1 at a high-power density of 1622.7 W kg−1 and 

excellent cyclability (capacity retention of 93% for 6000 cycles).  

EXPERIMENTAL SECTION 

Preparation of Graphite Oxide. Flake graphite (Asbury Carbons) was used to synthesize 

graphite oxide following the modified Hummers’ method.19, 20 First, graphite flakes (3 g) was 

added into the concentrated sulfuric acid (H2SO4, 70 mL) at room temperature (RT), and 

sodium nitrate (NaNO3, 1.5 g) was added to the solution. Subsequently, potassium 

permanganate (KMnO4, 9.0 g) was added slowly to maintain the suspension temperature at 
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15 °C under vigorous stirring in an ice bath. Successively, the mixture was stirred at 35 °C for 

30 min and diluted with deionized (DI) water (140 mL). Then, DI water (500 mL) and hydrogen 

peroxide solution (H2O2, 30 wt%, 20 mL) were added successively. Finally, the mixture was 

filtered and washed with 1:10 HCl aqueous solution (250 mL), followed by washing with DI 

water and centrifugation. The solution was freeze-dried to obtain brownish powder.  

Preparation of MnCO3@Graphene. The present amount of KMnO4 with KMnO4/graphene 

oxide (GO, 1 mg mL−1) weight ratio of 10:3 was added into the GO solution, and the mixture 

(30 mL) was then transferred into a 50 mL Teflon-lined stainless-steel autoclave and held at 

180 °C for 12 h before cooling down to RT naturally.17 After hydrothermal treatment, the as-

obtained sample was washed with DI water for several times. The elemental composition of 

the MnCO3@Graphene was determined by inductively coupled plasma mass spectrometry 

(Thermo Fisher, ICAP RQ). And the mass ratio of MnCO3 in the composite was calculated to 

be 80.0%. 

Preparation of MnCO3@Graphene/CNT. The self-standing MnCO3@graphene/CNT film 

was obtained simply by using vacuum filtration method. Single-walled CNT (50 mg, Iljin 

Nanotech) was added in DI water (100 mL), and then probe sonicated to ensure the sufficient 

mix. After that, the CNT dispersion (15 mL) was mixed with the well-dispersed 

MnCO3@graphene (72 mg) in 30 mL DI water under vigorous stirring for 60 min. The as-

obtained solution was obtained by vacuum filtration by a polytetrafluoroethylene membrane 

(0.2 µm pore size, 47 mm in diameter; SciLab), and a self-standing film was carefully removed 

off from the membrane. The areal density of the hybrid film is 4.04 mg cm−2.  

Characterization. The morphology and structure of the samples were investigated by scanning 

electron microscope (SEM; Hitachi, S-4800), transmission electron microscopy (TEM; FEI 

Talos, USA), X-ray powder diffraction (XRD; Rigaku MPA-2000 with Cu kα radiation in the 
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2θ range from 5° to 80°), X-ray photoelectron spectroscopy (XPS; AXIS SUPRA), and Raman 

spectrometer (XperRam 200).  

Electrochemical Measurements. Electrochemical performances were tested with 

electrochemical station (IVIUM Nstat) in three-electrode test for single electrodes and in a two-

electrode system for flexible ASC devices. In the three-electrode test, platinum foil, saturated 

calomel electrode (SCE, Hg/Hg2Cl2), and 1 M NaSO4 solution were used as the counter 

electrode, reference electrode, and the electrolyte, respectively.21, 22 Paper-type samples (1 cm 

× 1 cm) were used as the working electrode. The specific capacitance (Cs, F g−1) of a single 

electrode was calculated from galvanostatic charge-discharge (GCD) curves according to the 

equation, 

𝐶𝑠 =
𝐼 × ∆𝑡

𝑚 × ∆𝑉
,           (1) 

where I (A), Δt (s), m (g), and ΔV (V) represent the applied specific discharge current, the time 

for a full discharge, the mass of the active material, and the voltage window for one scanning 

segment, respectively. 

The flexible ASC was fabricated with MnCO3@graphene/CNT as the positive electrode, 

CC/AC as the negative electrode, and Na2SO4/PVA as the solid electrolyte. The CC/AC 

electrode was fabricated similarly as the aforementioned preparation of individual electrode, 

except that the current collector was CC (2 cm × 2 cm) (AvCarb 1071 HCB). The CC was 

sonicated in acetone, ethanol, and DI water for 30 min before use. The Na2SO4/PVA was 

prepared as follows: Na2SO4 (6 g) and PVA (6 g) were dissolved in DI water (60 mL) with 

vigorous and continuous stirring at 90 °C for 1 h.23 Gold-coated polyethylene terephthalate 

(PET) membrane was used as the conductive substrate. Prior to assembling, 

MnCO3@graphene/CNT and CC/AC electrode were soaked into the Na2SO4/PVA gel electrode 

for 2 h, and then maintained at 80 °C for 12 h to remove excess water. Finally, they were 
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assembled together under pressing.  

To obtain charge balance, the AC (m₋) to MnCO3@graphene/CNT (m₊) mass ratio (2.75) was 

obtained according to the equation, 

𝑚+

𝑚−
 =  

𝐶−∆𝑉−

𝐶+∆𝑉+
,          (2) 

For the assembled flexible ASC, specific capacitances (Casy, F g−1), energy density (E, Wh kg−1), 

and power density (P, W kg−1) were calculated as follows: 

𝐶𝑎𝑠𝑦 =
𝐼 × ∆𝑡

𝑀 × ∆𝑉
,           (3) 

𝐸 =  
1

2

1000𝐶𝑎𝑠𝑦∆𝑉2

3600
 ,                                                         (4) 

𝑃 =  
3600𝐸

∆𝑡
.           (5) 

RESULTS AND DISCUSSION 
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Figure 1. (a) Proposed MnCO3@graphene evolution process. (b and c) SEM images and (d) 

XRD pattern of MnCO3@graphene, (e) crystal structure of MnCO3. (f) Raman spectrum of 

MnCO3@graphene. (g) XPS spectrum of Mn 2p. 

 

Figure 1a shows the preparation of the MnCO3@graphene composites. The formation of Mn2+ 

is easier than that of MnO2 in the current hydrothermal process by comparing the electrode 

potential according to the Nernst equation.17 And the rod-like shape is generated through the 

rolling mechanism.24 A possible mechanism is proposed as follows: Permanganate is reduced 

into Mn2+ ions and further electrostatically bond with the O atoms of the negatively charged 

oxygen functional groups on graphene sheets as anchor sites. At the same time, graphene was 

reduced from graphene oxide. Under the hydrothermal conditions, MnCO3 nuclei appear first 

in the solution, and then MnCO3 nanosheets formed through a condensation reaction. 



9 

 

Subsequently, the sheet-like structure of MnCO3 curls into nano-rod. MnCO3 was formed along 

the graphene nanosheet framework during the hydrothermal process, leading to the wrapping 

of graphene nanosheets on the surface of MnCO3 nanorods. SEM images of as-synthesized 

MnCO3@graphene reveals all particles are rod-like and monodispersed with a length 

approximately <300 nm and nominal diameter of 15–30 nm (Figure 1b and c). Almost no 

graphene nanosheets are observed in the SEM images, suggesting MnCO3 nanorods are well 

wrapped by few-layer graphene. Additionally, small amount of graphene sheets can be found 

in the low-magnification SEM images and the graphene wrapped MnCO3 nanorods are in 

mutual contact to form film-like structure (Figure S1). Structural features of 

MnCO3@graphene are characterized using XRD, Raman spectroscopy, and XPS. Figure 1d 

shows the XRD pattern of MnCO3@graphene. The XRD pattern displays a broad diffraction 

peak at 22.6°, referring to the characteristics of graphene and verifying its existence in 

MnCO3@graphene,25 while other peaks are matched well to the rhodochrosite phase of MnCO3 

(JCPDS card No. 86-0173). Figure 1e shows the crystal structure of MnCO3 where MnO6 

octahedra and CO3 equilateral triangles are in the same plane perpendicular to the z-axis 26. A 

notable Mn-O vibrational band appears at 653.1 cm−1, demonstrating the presence of MnCO3 

in MnCO3@graphene (Figure 1f).8 The two peaks at ca. 1364 and ca. 1594 cm−1 correspond to 

sp3-type disordered carbon (D-band) and sp2-type ordered graphitic carbon (G-band), 

respectively.27 The ID/IG value of MnCO3@graphene (1.0) is higher than that of the GO (0.93) 

(Figure S2), which is indicative of the reduction of GO with more defects and disordered 

structure.28 A complete survey of MnCO3@graphene in Figure S3 shows the presence of Mn 

2p, Mn 2s, Mn 3s, Mn3p, O1s, and C1s, with no evidence of impurities. The high-resolution 

Mn 2p spectrum in Figure 1g shows two obvious peaks at binding energy of 641.6 and 653.1 

eV, corresponding to Mn 2p3/2 and Mn2p1/2 of Mn2+ in MnCO3, respectively.5, 29  
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Figure 2. (a, b, and c) TEM images of MnCO3@graphene at different magnifications. The inset 

of (c) shows an HRTEM image of the MnCO3@graphene. (d and e) HAADF-STEM image and 

corresponding elemental mapping images of MnCO3@graphene. (f) EDX result of 

MnCO3@graphene. Cu signals are from copper grid.  

 

TEM and high-resolution TEM (HRTEM) analyses are performed to understand the 

architecture of MnCO3@graphene active materials better. Figure 2a presents that all the 

MnCO3 nanorods are thoroughly wrapped by flexible and ultrathin graphene sheets. The 

graphene nanosheets not only encapsulate the MnCO3 nanorods but also interconnect 

neighboring nanorods. The bridging graphene sheets with high conductivity are envisioned to 

provide high efficient electronic connections for the monodispersed MnCO3 nanorods.30 

Meanwhile, the specific structure was expected to reinforce the mechanical stability of the 

electrode material and prevent the MnCO3 nanorods from aggregating and the electrochemical 
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dissolution during cycling.31 Figure 2b shows obvious interface between the MnCO3 nanorod 

and the attached graphene sheet. Figure 2c shows the HRTEM image of one MnCO3@graphene 

nanorod, in which the measured interplanar spacings of 0.367 nm for the well-resolved lattice 

fringes consist well with the rhodochrosite MnCO3 (012) planes. Further high-angle annular 

dark-field scanning transition electron microscopy (HAADF-STEM) image and element 

mapping analysis (Figure 2d, e) demonstrate that the Mn, O, and C elements are uniformly 

distributed along the MnCO3@graphe. A typical energy-dispersed X-ray spectroscopy (EDS) 

spectrum (Figure 2f) shows characteristic peaks of the elements, proving the coexistence of 

Mn, C, and O, and no impurities can be detected. 

Figure 3 illustrates the fabrication process of the flexible and self-standing 

MnCO3@graphene/CNT film. Figure 3e shows the digital images of the 

MnCO3@graphene/CNT film (37 mm in diameter). In addition, the film could be easily 

wrapped around a glass rod without any obvious mechanical damage, demonstrating its 

flexibility and durability. Figure 3f and S4 show the cross-section SEM image of the 

MnCO3@graphene/CNT film, revealing the uniform hybrid film with an average thickness of 

10 µm. The MnCO3@graphene composites were trapped in the porous CNT network, which 

offers several major advantages for high performance supercapacitors. (1) The intimate contact 

between the MnCO3@graphene and CNTs provides high electrical conductivity; (2) the 

interpenetrating MnCO3@graphene/CNT film possesses open channels, ensuring effective 

electrolyte transport and active-site accessibility; (3) the CNT, serving as electrode and current 

collector, produces film with high flexibility and high mechanical strength.32, 33 Notably, the 

synergistic effects of MnCO3@graphene and CNT could lead to a high flexibility 

electrochemical performance for MnCO3@graphene/CNT films.  
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Figure 3. Schematics of the fabrication process of MnCO3@graphene/CNT papers: (a) CNT 

and stable CNT dispersion. (b) MnCO3@graphene and stable MnCO3@graphene dispersion. 

(c)  CNT and MnCO3@graphene hybrid and the stable hybrid dispersion. (d) Vacuum filtrati

on was used in the fabrication process. (e) Digital photographs of the flexible and self-

standing MnCO3@graphene/CNT papers and wrapping of glass rod. (f) Cross-

section SEM image of the MnCO3@graphene/CNT papers with a thickness of 10 µm. (g) Sup

ercapacitor applications of the MnCO3@graphene/CNT papers and schematic of the mechani

sm involved in the rapid electron transport and ion diffusion of the unique structure.   
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Figure 4. (a) Comparison of CV curves of two different electrodes at 50 mV s−1. (b) CV curves 

of MnCO3@graphene/CNT electrode at different scan rates. (c) GCD curves of 

MnCO3@graphene/CNT electrode at different current densities. (d) Specific capacitances of 

the two electrodes at different current densities. (e) Nyquist plots of the electrodes. (f) Cycle 

performance of the two electrodes at 5 A g−1 for 6000 cycles.  

 

To evaluate the electrochemical performance of the MnCO3@graphene and 

MnCO3@graphene/CNT, samples were tested as working electrode in 1 M Na2SO4 aqueous 

electrolyte solution using a three-electrode configuration with a SCE reference electrode. 

Figure 4a shows the CV curves of MnCO3@graphene and MnCO3@graphene/CNT at a scan 

rate of 50 mV s−1. Both CV curves are nearly ideal symmetrical rectangular shape in wide 

potential window of −0.2 V to 0.8 V, revealing excellent capacitive behavior.34, 35 The reversibly 

redox reactions occurred on MnCO3 in NaSO4 solution can be considered as follows:14  

MnCO3 + Na+ + e⁻ ↔ NaMnCO3                                             (6)  
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The redox processes result in pseudocapacitance of MnCO3. Notably, the enlarged CV curve 

areas of MnCO3@graphene/CNT suggest higher specific capacitance than MnCO3@graphene, 

which could be attributable to the synergistic effects of MnCO3@graphene and CNT. Figure 

4b shows the CV curves for the MnCO3@graphene/CNT electrode with increasing scan rate 

from 5–100 mV s−1. The shape of the curves is well-retained up to 100 mV s−1, indicating a fast 

charge transportation characteristic of the electrolyte, interfaces, and electrode structure of the 

MnCO3@graphene/CNT.36-38 Figure 4c shows the GCD curves of MnCO3@graphene/CNT at 

various current densities. All the curves show good symmetry and nearly linear slopes, 

indicating the capacitive characteristic and good reversibility of the MnCO3@graphene/CNT 

electrode. In addition, no obvious voltage drop is noted, illustrating the low internal resistance 

of the MnCO3@graphene/CNT electrode. Figure 4d compares the specific capacitance values 

of the MnCO3@graphene (Figure S5) and MnCO3@graphene/CNT electrodes as a function of 

current density. The capacitances for MnCO3@graphene/CNT and MnCO3@graphene 

electrode at current densities of 1, 3, 5, and 10 A g−1 are 467.2, 438, 414, and 394 F g−1 and 

322.1, 282, 254, and 215.8 F g−1, respectively. Meanwhile, the MnCO3@graphene/CNT 

electrode has approximately 84.3% retention when the current density increases from 1 to 10 

A g−1, which is higher than the approximate retention of the MnCO3@graphene electrode, 

which is 67%. To further investigate ion/charge transfer kinetics of the samples, EIS was 

performed, as presented in Figure 4e. The results indicate that the MnCO3@graphene/CNT 

show lower equivalent series resistance (1.3 Ω) than the MnCO3@graphene (1.7 Ω), as 

obtained from the intercept of the Nyquist plots. In the Nyquist plots, smaller semicircle 

diameter and steeper liner slope for MnCO3@graphene/CNT indicate lower charge transfer 

resistance and faster ion transfer for the MnCO3@graphene/CNT electrode, respectively. The 

MnCO3@graphene/CNT electrode exhibits that 88.1% of the initial capacitance of the 

MnCO3@graphene/CNT electrode was retained after 6000 charge–discharge cycles at 5 A g−1, 
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revealing that the electrode has a very good long-term stability, which is important for practical 

applications (Figure 4f). This retention is higher than that of MnCO3@graphene electrode 

(77.3%). Remarkably, the superior electrochemical performances of the 

MnCO3@graphene/CNT electrodes are highly comparable with those of other MnCO3–based 

electrodes reported previously (Table S1).   

 

Figure 5. (a) Schematic of the assembled structure of a flexible all-solid-state asymmetric 

supercapacitor. (b) CV curves of the MnCO3@graphene/CNT electrode and the AC/CC 

electrode at a scan rate of 50 mV s−1. (c) CV curves of the MnCO3@graphene/CNT//AC/CC 

asymmetric supercapacitors in different upper potentials from 1.2 V to 1.8 V at a scan rate of 

50 mV s−1. (d) CV curves of the flexible devices at different scan rates. (e) GCD curves of the 

flexible devices at various current densities. (f) Specific capacitance at different current 
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densities. (g) CV curves at different bending angles. (h) Ragone plots of the 

MnCO3@graphene/CNT//CC/AC flexible device and previously reported MnCO3-based 

supercapacitors. (i) Cycling performance of the device over 6000 cycles at 5 A g−1. Inset: Red 

LED powered by two devices in the series. 

 

To further evaluate the MnCO3@graphene/CNT electrode for practical application, a flexible 

ASC device was assembled using the MnCO3@graphene/CNT as the positive electrode, the 

AC on CC as the negative electrode (the details can be found in the Experimental Section and 

Figure S6), and the Na2SO4/PVA as separator and electrolyte (Figure 5a). Given that the 

MnCO3@graphene/CNT electrode and the CC/AC electrode possess stable potential window 

of −1.0 V to 0.0 V and −0.2 V to 0.8 V, respectively (Figure 5b), the operating voltage of the 

flexible ASC can be extended to 1.8 V (Figure 5c). The CV curves of the flexible ASC devices 

were measured at various scan rates under 1.8 V (Figure 5d). All the CV curves exhibit 

approximately semi-rectangular shapes without any obvious redox peaks, indicating good 

reversibility and typical capacitive characteristics of our device. GCD curves collected at 

different current densities are near triangle-shaped curves (Figure 5e), signifying capacitive 

characteristic. The device exhibited high capacitance of 59.9 F g−1 at a current density of 1 A 

g−1 (Figure 5f). By increasing the current density to 10 A g−1, a capacitance of 52 F g−1 is 

retained, which corresponds to a capacitance retention of 86.8% of its initial value. Figure 5g 

shows that the CV curves remain almost the same at a scan rate of 50 mV s−1 under different 

bending angles of 15°, 45°, and 90°, suggesting that the integrity of the flexible ASC during 

bending. A slight increase in capacitance can be attributed to the reduced distance between two 

electrodes, which helps improve conductivity and ion transport during bending.39 The energy 

and power densities of MnCO3@graphene/CNT//CC/AC flexible device were further 

evaluated for practical application. As displayed in the Ragone plot (Figure 5h), the device 
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shows high energy density of 27 Wh kg−1 at a power density of 1622.7 W kg−1. Even at a high-

power density of 16200 W kg−1, the device still delivers an energy density of 23.4 Wh kg−1. 

These values are comparable to the previously reported MnCO3-based supercapacitors, such as 

MnO2/MnCO3//rGO (17.8 Wh kg−1 at 400 W kg−1)15, MnCO3@MnO2//rGO (27.4 Wh kg−1 at 

271.7 W kg−1)40, rGO-CNF-MnCO3//rGO (21 Wh kg−1 at 102 W kg−1)16, MnCO3//porous 

carbon (14.7 Wh kg−1 at 90.2 W kg−1)5. The cycling test shows that the device maintains high 

capacity retention of 93% at a current density of 5 A g−1 for 6000 cycles, indicating excellent 

electrochemical stability (Figure 5i). Moreover, two ASC devices connected in the series can 

light up a red LED (inset of Figure 5i). 

CONCLUSIONS 

In summary, unique MnCO3@graphene composites, in which the MnCO3 nanorod is well 

confined in the graphene, have been successfully fabricated for the first time. Flexible and self-

standing MnCO3@graphene/CNT film is prepared through vacuum filtration to avoid the use 

of cumbersome current collector. The flexible MnCO3@graphene/CNT film exhibits a high 

electrochemical performance (467.2 F g−1 at 1 A g−1). Moreover, a flexible asymmetric all-

solid-state MnCO3@graphene/CNT//CC/AC supercapacitor, which delivers a high energy 

density of 27 Wh kg−1 and excellent stability (93% capacitance retention over 6000 cycles, is 

further constructed. This work offers a new insight to general material designs toward the 

efficient fabrication of electrodes for flexible electrochemical energy storage.  
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FIGURE CAPTIONS 

Figure 1. (a) Proposed MnCO3@graphene evolution process. (b and c) SEM images and (d) 
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XRD pattern of MnCO3@graphene, (e) crystal structure of MnCO3. (f) Raman spectrum of 

MnCO3@graphene. (g) XPS spectrum of Mn 2p. 

Figure 2. (a, b, and c) TEM images of MnCO3@graphene at different magnifications. The inset 

of (c) shows an HRTEM image of the MnCO3@graphene. (d and e) HAADF-STEM image and 

corresponding elemental mapping images of MnCO3@graphene. (f) EDX result of 

MnCO3@graphene. Cu signals are from copper grid.  

Figure 3. Schematics of the fabrication process of MnCO3@graphene/CNT films: (a) CNT and 

stable CNT dispersion. (b) MnCO3@graphene and stable MnCO3@graphene dispersion. (c)  

CNT and MnCO3@graphene hybrid and the stable hybrid dispersion. (d) Vacuum filtration was 

used in the fabrication process. (e) Digital photographs of the flexible and self-standing 

MnCO3@graphene/CNT films and wrapping of glass rod. (f) Cross-section SEM image of the 

MnCO3@graphene/CNT films with a thickness of 10 µm. (g) Supercapacitor applications of 

the MnCO3@graphene/CNT films and schematic of the mechanism involved in the rapid 

electron transport and ion diffusion of the unique structure.   

Figure 4. (a) Comparison of CV curves of two different electrodes at 50 mV s−1. (b) CV curves 

of MnCO3@graphene/CNT electrode at different scan rates. (c) GCD curves of 

MnCO3@graphene/CNT electrode at different current densities. (d) Specific capacitances of 

the two electrodes at different current densities. (e) Nyquist plots of the electrodes. (f) Cycle 

performance of the two electrodes at 5 A g−1 for 6000 cycles.  

Figure 5. (a) Schematic of the assembled structure of a flexible all-solid-state asymmetric 

supercapacitor. (b) CV curves of the MnCO3@graphene/CNT electrode and the AC/CC 

electrode at a scan rate of 50 mV s−1. (c) CV curves of the MnCO3@graphene/CNT//AC/CC 

asymmetric supercapacitors in different upper potentials from 1.2 V to 1.8 V at a scan rate of 

50 mV s−1. (d) CV curves of the flexible devices at different scan rates. (e) GCD curves of the 
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flexible devices at various current densities. (f) Specific capacitance at different current 

densities. (g) CV curves at different bending angles. (h) Ragone plots of the 

MnCO3@graphene/CNT//CC/AC flexible device and previously reported MnCO3-based 

supercapacitors. (i) Cycling performance of the device over 6000 cycles at 5 A g−1. Inset: Red 

LED powered by two devices in the series.  
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Synopsis 

We report three-dimensional conductive network-based self-standing MnCO3@graphene/CNT 

hybrid film as advanced electrode, which exhibits excellent electrochemical performance in 

flexible supercapacitors. 

 


