129 research outputs found

    Global analyses of TetR family transcriptional regulators in mycobacteria indicates conservation across species and diversity in regulated functions

    Get PDF
    BACKGROUND: Mycobacteria inhabit diverse niches and display high metabolic versatility. They can colonise both humans and animals and are also able to survive in the environment. In order to succeed, response to environmental cues via transcriptional regulation is required. In this study we focused on the TetR family of transcriptional regulators (TFTRs) in mycobacteria. RESULTS: We used InterPro to classify the entire complement of transcriptional regulators in 10 mycobacterial species and these analyses showed that TFTRs are the most abundant family of regulators in all species. We identified those TFTRs that are conserved across all species analysed and those that are unique to the pathogens included in the analysis. We examined genomic contexts of 663 of the conserved TFTRs and observed that the majority of TFTRs are separated by 200 bp or less from divergently oriented genes. Analyses of divergent genes indicated that the TFTRs control diverse biochemical functions not limited to efflux pumps. TFTRs typically bind to palindromic motifs and we identified 11 highly significant novel motifs in the upstream regions of divergently oriented TFTRs. The C-terminal ligand binding domain from the TFTR complement in M. tuberculosis showed great diversity in amino acid sequence but with an overall architecture common to other TFTRs. CONCLUSION: This study suggests that mycobacteria depend on TFTRs for the transcriptional control of a number of metabolic functions yet the physiological role of the majority of these regulators remain unknown. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1696-9) contains supplementary material, which is available to authorized users

    Factors regulating Hb F synthesis in thalassemic diseases

    Get PDF
    BACKGROUND: The thalassemic syndromes originate from mutations of the globin genes that cause, besides the characteristic clinical picture, also an increased Hb F amount. It is not yet clear if there are more factors, besides the beta globin genotype, determining the Hb F production. We have tried to find out if there are relations between total Hb and Hb F, between erythropoietin (Epo) and Hb F, between Hb F and point mutations of the gamma gene promoters. MATERIALS AND METHODS: Hematologic parameters, iron status, alpha/non-alpha globin ratio, Epo level, and thalassemic defects of the alpha-, beta-, and gamma-globin genes were explored using standard methods in patients affected by thalassemic diseases. Ninety-five non thalassemic individuals have been examined as controls. RESULTS: Two clinical variants of beta-thalassemia intermedia referred to as beta-thal int sub-silent and evident are associated with distinct sets of mutations of the beta-globin gene. Silent beta thal mutations are invariably associated with sub-silent beta thal int; beta° or severe beta(+) thal mutations are associated with evident beta thal int (88%) and almost invariably (98%) with thalassemia major. A positive correlation was observed between the severity of the disease and the Hb F level, but no correlation was found between the Hb F and erythropoietin (Epo) level. The mutation Ggamma -158 C→T was detected in 26.9% of patients affected by beta-thal int sub-silent and evident, respectively, but only in 2% of patients with thalassemia major. CONCLUSIONS: The severity of beta-thal int and the increased Hb F level are strictly dependent from the type of beta-globin gene mutations. No relation is found between Hb F synthesis and Epo secretion. The mutation Ggamma -158 C→T, common among patients affected by beta-thal int and very rare in thal major patients, does not seem, in this study, to influence the Hb F content in beta thal int patients

    Probing Colored Particles with Photons, Leptons, and Jets

    Full text link
    If pairs of new colored particles are produced at the Large Hadron Collider, determining their quantum numbers, and even discovering them, can be non-trivial. We suggest that valuable information can be obtained by measuring the resonant signals of their near-threshold QCD bound states. If the particles are charged, the resulting signatures include photons and leptons and are sufficiently rich for unambiguously determining their various quantum numbers, including the charge, color representation and spin, and obtaining a precise mass measurement. These signals provide well-motivated benchmark models for resonance searches in the dijet, photon+jet, diphoton and dilepton channels. While these measurements require that the lifetime of the new particles be not too short, the resulting limits, unlike those from direct searches for pair production above threshold, do not depend on the particles' decay modes. These limits may be competitive with more direct searches if the particles decay in an obscure way.Comment: 39 pages, 9 figures; v2: more recent searches include

    The use of hedgerows as flight paths by moths in intensive farmland landscapes

    Get PDF
    Linear boundary features such as hedgerows are important habitats for invertebrates in agricultural landscapes. Such features can provide shelter, larval food plants and nectar resources. UK butterflies are known to rely on such features, however their use by moths is understudied. With moth species suffering from significant declines, research into their ecology is important. This research aimed to determine whether UK moth species are using hedgerows as flight paths in intensive farmland. The directional movements of moths were recorded along hedgerows at 1, 5 and 10 m from the hedgerow face. The majority of moths recorded within the study were observed at 1 m from the hedgerow (68 %), and of these individuals, 69% were moving parallel in relation to the hedge. At further distances, the proportion of parallel movements was reduced. These results suggest that hedgerows may be providing sheltered corridors for flying insects in farmland landscapes, as well as likely providing food plants and nectar resources, emphasising the importance of resource-based approaches to conservation for Lepidoptera

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    A Mitosis Block Links Active Cell Cycle with Human Epidermal Differentiation and Results in Endoreplication

    Get PDF
    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation

    Histone deacetylase inhibitors: clinical implications for hematological malignancies

    Get PDF
    Histone modifications have widely been implicated in cancer development and progression and are potentially reversible by drug treatments. The N-terminal tails of each histone extend outward through the DNA strand containing amino acid residues modified by posttranslational acetylation, methylation, and phosphorylation. These modifications change the secondary structure of the histone protein tails in relation to the DNA strands, increasing the distance between DNA and histones, and thus allowing accessibility of transcription factors to gene promoter regions. A large number of HDAC inhibitors have been synthesized in the last few years, most being effective in vitro, inducing cancer cells differentiation or cell death. The majority of the inhibitors are in clinical trials, unlike the suberoylanilide hydroxamic acid, a pan-HDACi, and Romidepsin (FK 228), a class I-selective HDACi, which are only approved in the second line treatment of refractory, persistent or relapsed cutaneous T-cell lymphoma, and active in approximately 150 clinical trials, in monotherapy or in association. Preclinical studies investigated the use of these drugs in clinical practice, as single agents and in combination with chemotherapy, hypomethylating agents, proteasome inhibitors, and MTOR inhibitors, showing a significant effect mostly in hematological malignancies. The aim of this review is to focus on the biological features of these drugs, analyzing the possible mechanism(s) of action and outline an overview on the current use in the clinical practice

    Infectious Speciation Revisited: Impact of Symbiont-Depletion on Female Fitness and Mating Behavior of Drosophila paulistorum

    Get PDF
    The neotropical Drosophila paulistorum superspecies, consisting of at least six geographically overlapping but reproductively isolated semispecies, has been the object of extensive research since at least 1955, when it was initially trapped mid-evolution in flagrant statu nascendi. In this classic system females express strong premating isolation patterns against mates belonging to any other semispecies, and yet uncharacterized microbial reproductive tract symbionts were described triggering hybrid inviability and male sterility. Based on theoretical models and limited experimental data, prime candidates fostering symbiont-driven speciation in arthropods are intracellular bacteria belonging to the genus Wolbachia. They are maternally inherited symbionts of many arthropods capable of manipulating host reproductive biology for their own benefits. However, it is an ongoing debate as to whether or not reproductive symbionts are capable of driving host speciation in nature and if so, to what extent. Here we have reevaluated this classic case of infectious speciation by means of present day molecular approaches and artificial symbiont depletion experiments. We have isolated the α-proteobacteria Wolbachia as the maternally transmitted core endosymbionts of all D. paulistorum semispecies that have coevolved towards obligate mutualism with their respective native hosts. In hybrids, however, these mutualists transform into pathogens by overreplication causing embryonic inviability and male sterility. We show that experimental reduction in native Wolbachia titer causes alterations in sex ratio, fecundity, and mate discrimination. Our results indicate that formerly designated Mycoplasma-like organisms are most likely Wolbachia that have evolved by becoming essential mutualistic symbionts in their respective natural hosts; they have the potential to trigger pre- and postmating isolation. Furthermore, in light of our new findings, we revisit the concept of infectious speciation and discuss potential mechanisms that can restrict or promote symbiont-induced speciation at post- and prezygotic levels in nature and under artificial laboratory conditions
    corecore