186 research outputs found

    Aortic dissection at the University hospital of the West Indies: A 20-year clinicopathological study of autopsy cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An autopsy study of aortic dissection (AD) at our institution was previously reported. In the approximately 20 years since then, however, many aspects of diagnosis and treatment of this disease have changed, with a fall in mortality reported in many centers around the world. An impression amongst our pathologists that, there might be an increase in the prevalence of AD in the autopsy service at our hospital, since that earlier report, led to this repeated study, in an attempt to validate that notion. We also sought to identify any changes in clinicopathological features between the two series or any occurring during this study period itself.</p> <p>Findings</p> <p>All cases of AD identified at autopsy, during the 20-year period since the conclusion of the last study, were collected and pertinent clinical and pathological data were analyzed and compared, both within the two decades of this study period and against the results of the last study.</p> <p>Fifty-six cases comprised this study group including 36 males and 20 females, with a mean age of 63.9 years. There were, more patients in the second decade (n = 33; 59%) compared with the first decade (n = 23; 41%). Hypertension as a risk factor was identified in 52 (93%) cases and rupture occurred in 49 (88%) cases. A clinical diagnosis of AD was considered prior to surgery or autopsy in 25 (45%) cases overall, more during the second decade. Surgery was attempted in 25% of all cases with an increase in the second decade compared with the first.</p> <p>Conclusions</p> <p>Compared with the earlier review, a variety of changes in the profile of patients with AD in the autopsy service has been noted, including a reversal in the female predominance seen previously. Other observations include an increase in cases where the correct clinical diagnosis was considered and in which surgical treatment was attempted, changes also evident when the second decade of the present study was compared with the earlier decade. Overall, there were many positive trends. However, areas that could still be improved include an increased index of suspicion for the diagnosis of AD and perhaps in the initiation of treatment, earlier, in those cases where the correct diagnosis was considered.</p

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. β€˜β€˜Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of β€˜β€˜backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    The Plasmodium falciparum STEVOR Multigene Family Mediates Antigenic Variation of the Infected Erythrocyte

    Get PDF
    Modifications of the Plasmodium falciparum–infected red blood cell (iRBC) surface have been linked to parasite-associated pathology. Such modifications enable the parasite to establish long-lasting chronic infection by evading antibody mediate immune recognition and splenic clearance. With the exception of the well-demonstrated roles of var-encoded PfEMP1 in virulence and immune evasion, the biological significance of other variant surface antigens (rif and stevor) is largely unknown. While PfEMP1 and RIFIN have been located on the iRBC surface, recent studies have located STEVOR at the iRBC membrane where it may be exposed on the erythrocyte surface. To investigate the role of STEVOR in more detail, we have developed antibodies against two putative STEVOR proteins and used a combination of indirect immunofluorescence assays (IFA), live IFA, flow cytometry, as well as agglutination assays, which enable us to demonstrate that STEVOR is clonally variant at the surface of schizont stage parasites. Crucially, expression of different STEVOR on the surface of the iRBC changes the antigenic property of the parasite. Taken together, our data for the first time demonstrate that STEVOR plays a role in creating antigenic diversity of schizont stage parasites, thereby adding additional complexity to the immunogenic properties of the iRBC. Furthermore, it clearly demonstrates that to obtain a complete understanding of how parasite-induced pathology is linked to variation on the surface of the iRBC, focusing the interactions of multiple multigene families needs to be considered

    Contribution of Pollinator-Mediated Crops to Nutrients in the Human Food Supply

    Get PDF
    The contribution of nutrients from animal pollinated world crops has not previously been evaluated as a biophysical measure for the value of pollination services. This study evaluates the nutritional composition of animal-pollinated world crops. We calculated pollinator dependent and independent proportions of different nutrients of world crops, employing FAO data for crop production, USDA data for nutritional composition, and pollinator dependency data according to Klein et al. (2007). Crop plants that depend fully or partially on animal pollinators contain more than 90% of vitamin C, the whole quantity of Lycopene and almost the full quantity of the antioxidants Ξ²-cryptoxanthin and Ξ²-tocopherol, the majority of the lipid, vitamin A and related carotenoids, calcium and fluoride, and a large portion of folic acid. Ongoing pollinator decline may thus exacerbate current difficulties of providing a nutritionally adequate diet for the global human population

    Standard of Practice for the Endovascular Treatment of Thoracic Aortic Aneurysms and Type B Dissections

    Get PDF
    Thoracic endovascular aortic repair (TEVAR) represents a minimally invasive technique alternative to conventional open surgical reconstruction for the treatment of thoracic aortic pathologies. Rapid advances in endovascular technology and procedural breakthroughs have contributed to a dramatic transformation of the entire field of thoracic aortic surgery. TEVAR procedures can be challenging and, at times, extraordinarily difficult. They require seasoned endovascular experience and refined skills. Of all endovascular procedures, meticulous assessment of anatomy and preoperative procedure planning are absolutely paramount to produce optimal outcomes. These guidelines are intended for use in quality-improvement programs that assess the standard of care expected from all physicians who perform TEVAR procedures

    The effects of migrant remittances on population–environment dynamics in migrant origin areas: international migration, fertility, and consumption in highland Guatemala

    Get PDF
    International migration impacts origin regions in many ways. As examples, remittances from distant migrants may alter consumption patterns within sending communities, while exposure to different cultural norms may alter other behaviors. This paper combines these insights to offer a unique lens on migration’s environmental impact. From an environmental perspective, we ask the following question: is the likely rise in consumption brought about by remittances counterbalanced by a reduction in fertility in migrant households following exposure to lower fertility cultures? Based on ethnographic case studies in two western highland Guatemalan communities, we argue that the near-term rise in consumption due to remittances is not counterbalanced by rapid decline in migrant household fertility. However, over time, the environmental cost of consumption may be mitigated at the community level through diffusion of contraception and family planning norms yielding lower family size

    Comparative Transcriptional and Genomic Analysis of Plasmodium falciparum Field Isolates

    Get PDF
    Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs). Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment
    • …
    corecore