43 research outputs found

    Structural approaches for prevention of sexually transmitted HIV in general populations: definitions and an operational approach.

    Get PDF
    INTRODUCTION: Although biomedical HIV prevention efforts have seen a number of recent promising developments, behavioural interventions have often been described as failing. However, clear lessons have been identified from past efforts, including the need to address influential social, economic and legal structures; to tailor efforts to local contexts; and to address multiple influencing factors in combination. Despite these insights, there remains a pervasive strategy to try to achieve sexual behaviour change through single, decontextualized, interventions or sets of activities. With current calls for structural approaches to HIV as part of combination HIV prevention, though, there is a unique opportunity to define a structural approach to HIV prevention as one which moves beyond these past limitations and better incorporates our knowledge of the social world and the lessons from past efforts. DISCUSSION: A range of interlinked concepts require delineation and definition within the broad concept of a structural approach to HIV. This includes distinguishing between "structural factors," which can be seen as any number of elements (other than knowledge) which influence risk and vulnerability, and "structural drivers," which should be reserved for situations where an empirically established relationship to a target group is known. Operationalizing structural approaches similarly can take different paths, either working to alter structural drivers or alternatively working to build individual and community resilience to infection. A "structural diagnostic approach" is further defined as the process one undertakes to develop structural intervention strategies tailored to target groups. CONCLUSIONS: For three decades, the HIV prevention community has struggled to reduce the spread of HIV through sexual risk behaviours with limited success, but equally with limited engagement with the lessons that have been learned about the social realities shaping patterns of sexual practices. Future HIV prevention efforts must address the multiple factors influencing risk and vulnerability, and they must do so in ways tailored to particular settings. Clarity on the concepts, terminology and approaches that can allow structural HIV prevention efforts to achieve this is therefore essential to improve the (social) science of HIV prevention

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    HIV Surveillance in a Large, Community-Based Study: Results from the Pilot Study of Project Accept (HIV Prevention Trials Network 043)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Project Accept is a community randomized, controlled trial to evaluate the efficacy of community mobilization, mobile testing, same-day results, and post-test support for the prevention of HIV infection in Thailand, Tanzania, Zimbabwe, and South Africa. We evaluated the accuracy of in-country HIV rapid testing and determined HIV prevalence in the Project Accept pilot study.</p> <p>Methods</p> <p>Two HIV rapid tests were performed in parallel in local laboratories. If the first two rapid tests were discordant (one reactive, one non-reactive), a third HIV rapid test or enzyme immunoassay was performed. Samples were designated HIV NEG if the first two tests were non-reactive, HIV DISC if the first two tests were discordant, and HIV POS if the first two tests were reactive. Samples were re-analyzed in the United States using a panel of laboratory tests.</p> <p>Results</p> <p>HIV infection status was correctly determined based on-in country testing for 2,236 (99.5%) of 2,247 participants [7 (0.37%) of 1,907 HIV NEG samples were HIV-positive; 2 (0.63%) of 317 HIV POS samples were HIV-negative; 2 (8.3%) of 24 HIV DISC samples were incorrectly identified as HIV-positive based on the in-country tie-breaker test]. HIV prevalence was: Thailand: 0.6%, Tanzania: 5.0%, Zimbabwe 14.7%, Soweto South Africa: 19.4%, Vulindlela, South Africa: 24.4%, (overall prevalence: 14.4%).</p> <p>Conclusions</p> <p>In-country testing based on two HIV rapid tests correctly identified the HIV infection status for 99.5% of study participants; most participants with discordant HIV rapid tests were not infected. HIV prevalence varied considerably across the study sites (range: 0.6% to 24.4%).</p> <p>Trial Registration</p> <p>ClinicalTrials.gov registry number <a href="http://www.clinicaltrials.gov/ct2/show/NCT00203749">NCT00203749</a>.</p

    Allocating HIV Prevention Funds in the United States: Recommendations from an Optimization Model

    Get PDF
    The Centers for Disease Control and Prevention (CDC) had an annual budget of approximately $327 million to fund health departments and community-based organizations for core HIV testing and prevention programs domestically between 2001 and 2006. Annual HIV incidence has been relatively stable since the year 2000 [1] and was estimated at 48,600 cases in 2006 and 48,100 in 2009 [2]. Using estimates on HIV incidence, prevalence, prevention program costs and benefits, and current spending, we created an HIV resource allocation model that can generate a mathematically optimal allocation of the Division of HIV/AIDS Prevention’s extramural budget for HIV testing, and counseling and education programs. The model’s data inputs and methods were reviewed by subject matter experts internal and external to the CDC via an extensive validation process. The model projects the HIV epidemic for the United States under different allocation strategies under a fixed budget. Our objective is to support national HIV prevention planning efforts and inform the decision-making process for HIV resource allocation. Model results can be summarized into three main recommendations. First, more funds should be allocated to testing and these should further target men who have sex with men and injecting drug users. Second, counseling and education interventions ought to provide a greater focus on HIV positive persons who are aware of their status. And lastly, interventions should target those at high risk for transmitting or acquiring HIV, rather than lower-risk members of the general population. The main conclusions of the HIV resource allocation model have played a role in the introduction of new programs and provide valuable guidance to target resources and improve the impact of HIV prevention efforts in the United States

    Functional and Molecular Effects of Arginine Butyrate and Prednisone on Muscle and Heart in the mdx Mouse Model of Duchenne Muscular Dystrophy

    Get PDF
    The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin.In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy.These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity

    Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance

    Get PDF
    Recent studies on plant immunity have suggested that a pathogen should suppress induced plant defense in order to infect a plant species, which otherwise would have been a nonhost to the pathogen. For this purpose, pathogens exploit effector molecules to interfere with different layers of plant defense responses. In this review, we summarize the latest findings on plant factors that are activated by pathogen effectors to suppress plant immunity. By looking from a different point of view into host and nonhost resistance, we propose a novel breeding strategy: disabling plant disease susceptibility genes (S-genes) to achieve durable and broad-spectrum resistance

    Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens.

    Get PDF
    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence
    corecore