135 research outputs found
Recommended from our members
Fuzzy Bayesian inference for mapping vague and place-based regions: a case study of sectarian territory
The problem of mapping regions with socially-derived boundaries has been a topic of discussion in the GIS literature for many years. Fuzzy approaches have frequently been suggested as solutions, but none have been adopted. This is likely due to difficulties associated with determining suitable membership functions, which are often as arbitrary as the crisp boundaries that they seek to replace. This paper presents a novel approach to fuzzy geographical modelling that replaces the membership function with a possibility distribution that is estimated using Bayesian inference. In this method, data from multiple sources are combined to estimate the degree to which a given location is a member of a given set and the level of uncertainty associated with that estimate. The Fuzzy Bayesian Inference approach is demonstrated through a case study in which census data are combined with perceptual and behavioural evidence to model the territory of two segregated groups (Catholics and Protestants) in Belfast, Northern Ireland, UK. This novel method provides a robust empirical basis for the use of fuzzy models in GIS, and therefore has applications for mapping a range of socially-derived and otherwise vague boundaries
Primary omental Gastrointestinal stromal tumor (GIST)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Topology of the C-Terminal Tail of HIV-1 gp41: Differential Exposure of the Kennedy Epitope on Cell and Viral Membranes
The C-terminal tail (CTT) of the HIV-1 gp41 envelope (Env) protein is increasingly recognized as an important determinant of Env structure and functional properties, including fusogenicity and antigenicity. While the CTT has been commonly referred to as the “intracytoplasmic domain” based on the assumption of an exclusive localization inside the membrane lipid bilayer, early antigenicity studies and recent biochemical analyses have produced a credible case for surface exposure of specific CTT sequences, including the classical “Kennedy epitope” (KE) of gp41, leading to an alternative model of gp41 topology with multiple membrane-spanning domains. The current study was designed to test these conflicting models of CTT topology by characterizing the exposure of native CTT sequences and substituted VSV-G epitope tags in cell- and virion-associated Env to reference monoclonal antibodies (MAbs). Surface staining and FACS analysis of intact, Env-expressing cells demonstrated that the KE is accessible to binding by MAbs directed to both an inserted VSV-G epitope tag and the native KE sequence. Importantly, the VSV-G tag was only reactive when inserted into the KE; no reactivity was observed in cells expressing Env with the VSV-G tag inserted into the LLP2 domain. In contrast to cell-surface expressed Env, no binding of KE-directed MAbs was observed to Env on the surface of intact virions using either immune precipitation or surface plasmon resonance spectroscopy. These data indicate apparently distinct CTT topologies for virion- and cell-associated Env species and add to the case for a reconsideration of CTT topology that is more complex than currently envisioned
Apolipoprotein E Genotype and Cardiovascular Diseases in the Elderly
The apolipoprotein E (APOE) genotype is a genetic risk factor for dementia, Alzheimer’s disease, and cardiovascular disease (CVD). It includes three alleles (e2, e3, e4) that are located on chromosome 19q3.2. The e3 allele is the most common and is more common in people of Northern European ancestry and less common in those of Asian ancestry. Those with at least one e4 allele are at increased risk for CVD outcomes. It is well established that the presence of an e4 allele is linked to higher low-density lipoprotein cholesterol levels, even at young ages. Even though most CVD occurs in older people, there are few studies of the effects of APOE on CVD in older people. This review addresses recent research on the links between APOE, CVD, and vascular mechanisms by which APOE may affect CVD in the elderly
Otolith geochemistry does not reflect dispersal history of clownfish larvae
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 29 (2010): 883-891, doi:10.1007/s00338-010-0652-z.Natural geochemical signatures in calcified structures are commonly employed to retrospectively estimate dispersal pathways of larval fish and invertebrates. However, the accuracy of the approach is generally untested due to the absence of individuals with known dispersal histories. We used genetic parentage analysis (genotyping) to divide 110 new recruits of the orange clownfish, Amphiprion percula, from Kimbe Island, Papua New Guinea, into two groups: “self-recruiters” spawned by parents on Kimbe Island and “immigrants” that had dispersed from distant reefs (>10km away). Analysis of daily increments in sagittal otoliths found no significant difference in PLDs or otolith growth rates between self-recruiting and immigrant larvae. We also quantified otolith Sr/Ca and Ba/Ca ratios during the larval phase using laser ablation inductively coupled plasma mass spectrometry. Again, we found no significant differences in larval profiles of either element between self-recruits and immigrants. Our results highlight the need for caution when interpreting otolith dispersal histories based on natural geochemical tags in the absence of water chemistry data or known-origin larvae with which to test the discriminatory ability of natural tags.Research was supported by the Australian Research Council, the Coral Reef Initiatives for the Pacific (CRISP), the Global Environmental Facility CRTR Connectivity Working Group, the Total Foundation, a National Science Foundation grant (#0424688) to SRT, and a National Science Foundation Graduate Research Fellowship to MLB
Chronic Melatonin Administration Reduced Oxidative Damage and Cellular Senescence in the Hippocampus of a Mouse Model of Down Syndrome
Previous studies have demonstrated that melatonin administration improves spatial learning and memory and hippocampal long-term potentiation in the adult Ts65Dn (TS) mouse, a model of Down syndrome (DS). This functional benefit of melatonin was accompanied by protection from cholinergic neurodegeneration and the attenuation of several hippocampal neuromorphological alterations in TS mice. Because oxidative stress contributes to the progression of cognitive deficits and neurodegeneration in DS, this study evaluates the antioxidant effects of melatonin in the brains of TS mice. Melatonin was administered to TS and control mice from 6 to 12 months of age and its effects on the oxidative state and levels of cellular senescence were evaluated. Melatonin treatment induced antioxidant and antiaging effects in the hippocampus of adult TS mice. Although melatonin administration did not regulate the activities of the main antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) in the cortex or hippocampus, melatonin decreased protein and lipid oxidative damage by reducing the thiobarbituric acid reactive substances (TBARS) and protein carbonyls (PC) levels in the TS hippocampus due to its ability to act as a free radical scavenger. Consistent with this reduction in oxidative stress, melatonin also decreased hippocampal senescence in TS animals by normalizing the density of senescence-associated â-galactosidase positive cells in the hippocampus. These results showed that this treatment attenuated the oxidative damage and cellular senescence in the brain of TS mice and support the use of melatonin as a potential therapeutic agent for age-related cognitive deficits and neurodegeneration in adults with DS
- …