4,181 research outputs found
The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case
Truncated accretion disks are commonly invoked to explain the
spectro-temporal variability from accreting black holes in both small systems,
i.e. state transitions in galactic black hole binaries (GBHBs), and large
systems, i.e. low-luminosity active galactic nuclei (LLAGNs). In the canonical
truncated disk model of moderately low accretion rate systems, gas in the inner
region of the accretion disk occupies a hot, radiatively inefficient phase,
which leads to a geometrically thick disk, while the gas in the outer region
occupies a cooler, radiatively efficient phase that resides in the standard
geometrically thin disk. Observationally, there is strong empirical evidence to
support this phenomenological model, but a detailed understanding of the
dynamics of truncated disks is lacking. We present a well-resolved viscous,
hydrodynamic simulation that uses an ad hoc cooling prescription to drive a
thermal instability and, hence, produce the first sustained truncated accretion
disk. With this simulation, we perform a study of the dynamics, angular
momentum transport, and energetics of a truncated disk. We find that time
variability introduced by the quasi-periodic transition of gas from efficient
cooling to inefficient cooling impacts the evolution of the simulated disk. A
consequence of the thermal instability is that an outflow is launched from the
hot/cold gas interface which drives large, sub-Keplerian convective cells in
the disk atmosphere. The convective cells introduce a viscous
stress that is less than the generic viscous stress component, but
greatly influences the evolution of the disk. In the truncated disk, we find
that the bulk of the accreted gas is in the hot phase.Comment: 16 pgs, 14 figures, accepted for publication in Ap
Annually resolved North Atlantic marine climate over the last millennium
This is the final version of the article. Available from Nature Publishing Group via the DOI in this record.Owing to the lack of absolutely dated oceanographic information before the modern instrumental period, there is currently significant debate as to the role played by North Atlantic Ocean dynamics in previous climate transitions (for example, Medieval Climate Anomaly-Little Ice Age, MCA-LIA). Here we present analyses of a millennial-length, annually resolved and absolutely dated marine δ(18)O archive. We interpret our record of oxygen isotope ratios from the shells of the long-lived marine bivalve Arctica islandica (δ(18)O-shell), from the North Icelandic shelf, in relation to seawater density variability and demonstrate that solar and volcanic forcing coupled with ocean circulation dynamics are key drivers of climate variability over the last millennium. During the pre-industrial period (AD 1000-1800) variability in the sub-polar North Atlantic leads changes in Northern Hemisphere surface air temperatures at multi-decadal timescales, indicating that North Atlantic Ocean dynamics played an active role in modulating the response of the atmosphere to solar and volcanic forcing.We thank the members of the RV Bjarni Sæmundsson (Cruise No. B05-2006). This work was supported by the NERC-funded ULTRA project (Grant Number NE/H023356/1), NERC-funded CLAM project; (Project No. NE/N001176/1) and EU Millennium Project (Project number 017008). This study is a contribution to the Climate Change Consortium for Wales (C3W). We thank Brian Long (Bangor University) and Dr Julia Becker (Cardiff University) for their technical support, and Dr Manfred Mudelsee for his assistance with the trend analysis. We thank Dr Jessica Tierney and an anonymous reviewer for providing the constructive comments in the reviewing process
The Influence of Accretion Disk Thickness on the Large-scale Magnetic Dynamo
The evolution of the magnetic field from the large-scale dynamo is considered
a central feature of the accretion disk around a black hole. The resulting
low-frequency oscillations introduced from the growth and decay of the field
strength, along with the change in field orientation, play an integral role in
the accretion disk behavior. Despite the importance of this process and how
commonly it is invoked to explain variable features, it still remains poorly
understood. We present a study of the dynamo using a suite of four global,
high-resolution, MHD accretion disk simulations. We systematically vary the
scale height ratio and find the large-scale dynamo fails to organize above a
scale height ratio of . Using spacetime diagrams of the
azimuthal magnetic field, we show the large-scale dynamo is well-ordered in the
thinner accretion disk models, but fails to develop the characteristic
"butterfly" pattern when the scale height ratio is increased, a feature which
is also reflected in the power spectra. Additionally, we calculate the dynamo
-parameter and generate synthetic light curves. Using an emission
proxy, we find the disks have markedly different characters as stochastic
photometric fluctuations have a larger amplitude when the dynamo is unordered
Multiwavelength Observations of Pulsar Wind Nebulae
The extended nebulae formed as pulsar winds expand into their surroundings
provide information about the composition of the winds, the injection history
from the host pulsar, and the material into which the nebulae are expanding.
Observations from across the electromagnetic spectrum provide constraints on
the evolution of the nebulae, the density and composition of the surrounding
ejecta, the geometry of the central engines, and the long-term fate of the
energetic particles produced in these systems. Such observations reveal the
presence of jets and wind termination shocks, time-varying compact emission
structures, shocked supernova ejecta, and newly formed dust. Here I provide a
broad overview of the structure of pulsar wind nebulae, with specific examples
from observations extending from the radio band to very-high-energy gamma-rays
that demonstrate our ability to constrain the history and ultimate fate of the
energy released in the spin-down of young pulsars.Comment: 20 pages, 11 figures. Invited review to appear in Proc. of the
inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their
Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space
Science series
A Simple Iterative Model Accurately Captures Complex Trapline Formation by Bumblebees Across Spatial Scales and Flower Arrangements
PMCID: PMC3591286This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Study protocol: can a school gardening intervention improve children's diets?
BACKGROUND: The current academic literature suggests there is a potential for using gardening as a tool to improve children's fruit and vegetable intake. This study is two parallel randomised controlled trials (RCT) devised to evaluate the school gardening programme of the Royal Horticultural Society (RHS) Campaign for School Gardening, to determine if it has an effect on children's fruit and vegetable intake. METHOD/DESIGN: Trial One will consist of 26 schools; these schools will be randomised into two groups, one to receive the intensive intervention as "Partner Schools" and the other to receive the less intensive intervention as "Associate Schools". Trial Two will consist of 32 schools; these schools will be randomised into either the less intensive intervention "Associate Schools" or a comparison group with delayed intervention. Baseline data collection will be collected using a 24-hour food diary (CADET) to collect data on dietary intake and a questionnaire exploring children's knowledge and attitudes towards fruit and vegetables. A process measures questionnaire will be used to assess each school's gardening activities. DISCUSSION: The results from these trials will provide information on the impact of the RHS Campaign for School Gardening on children's fruit and vegetable intake. The evaluation will provide valuable information for designing future research in primary school children's diets and school based interventions. TRIAL REGISTRATION: ISRCTN11396528
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Deletion of the GABAA α2-subunit does not alter self dministration of cocaine or reinstatement of cocaine seeking
Rationale
GABAA receptors containing α2-subunits are highly represented in brain areas that are involved in motivation and reward, and have been associated with addiction to several drugs, including cocaine. We have shown previously that a deletion of the α2-subunit results in an absence of sensitisation to cocaine.
Objective
We investigated the reinforcing properties of cocaine in GABAA α2-subunit knockout (KO) mice using an intravenous self-administration procedure.
Methods
α2-subunit wildtype (WT), heterozygous (HT) and KO mice were trained to lever press for a 30 % condensed milk solution. After implantation with a jugular catheter, mice were trained to lever press for cocaine (0.5 mg/kg/infusion) during ten daily sessions. Responding was extinguished and the mice tested for cue- and cocaine-primed reinstatement. Separate groups of mice were trained to respond for decreasing doses of cocaine (0.25, 0.125, 0.06 and 0.03 mg/kg).
Results
No differences were found in acquisition of lever pressing for milk. All genotypes acquired self-administration of cocaine and did not differ in rates of self-administration, dose dependency or reinstatement. However, whilst WT and HT mice showed a dose-dependent increase in lever pressing during the cue presentation, KO mice did not.
Conclusions
Despite a reported absence of sensitisation, motivation to obtain cocaine remains unchanged in KO and HT mice. Reinstatement of cocaine seeking by cocaine and cocaine-paired cues is also unaffected. We postulate that whilst not directly involved in reward perception, the α2-subunit may be involved in modulating the “energising” aspect of cocaine’s effects on reward-seeking
Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
How Mistimed and Unwanted Pregnancies Affect Timing of Antenatal Care Initiation in three Districts in Tanzania
Early antenatal care (ANC) initiation is a doorway to early detection and management of potential complications associated with pregnancy. Although the literature reports various factors associated with ANC initiation such as parity and age, pregnancy intentions is yet to be recognized as a possible predictor of timing of ANC initiation. Data originate from a cross-sectional household survey on health behaviour and service utilization patterns. The survey was conducted in 2011 in Rufiji, Kilombero and Ulanga districts in Tanzania on 910 women of reproductive age who had given birth in the past two years. ANC initiation was considered to be early only if it occurred in the first trimester of pregnancy gestation. A recently completed pregnancy was defined as mistimed if a woman wanted it later, and if she did not want it at all the pregnancy was termed as unwanted. Chisquare was used to test for associations and multinomial logistic regression was conducted to examine how mistimed and unwanted pregnancies affect timing of ANC initiation. Although 49.3% of the women intended to become pregnant, 50.7% (34.9% mistimed and 15.8% unwanted) became pregnant unintentionally. While ANC initiation in the 1st trimester was 18.5%, so was 71.7% and 9.9% in the 2nd and 3rd trimesters respectively. Multivariate analysis revealed that ANC initiation in the 2nd trimester was 1.68 (95% CI 1.10‒2.58) and 2.00 (95% CI 1.05‒3.82) times more likely for mistimed and unwanted pregnancies respectively compared to intended pregnancies. These estimates rose to 2.81 (95% CI 1.41‒5.59) and 4.10 (95% CI 1.68‒10.00) respectively in the 3rd trimester. We controlled for gravidity, age, education, household wealth, marital status, religion, district of residence and travel time to a health facility. Late ANC initiation is a significant maternal and child health consequence of mistimed and unwanted pregnancies in Tanzania. Women should be empowered to delay or avoid pregnancies whenever they need to do so. Appropriate counseling to women, especially those who happen to conceive unintentionally is needed to minimize the possibility of delaying ANC initiation.\u
- …
