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ABSTRACT

The evolution of the magnetic field from the large-scale dynamo is considered a central feature of
the accretion disk around a black hole. The resulting low-frequency oscillations introduced from the
growth and decay of the field strength, along with the change in field orientation, play an integral role
in the accretion disk behavior. Despite the importance of this process and how commonly it is invoked
to explain variable features, it still remains poorly understood. We present a study of the dynamo
using a suite of four global, high-resolution, MHD accretion disk simulations. We systematically vary
the scale height ratio and find the large-scale dynamo fails to organize above a scale height ratio
of h/r & 0.2. Using spacetime diagrams of the azimuthal magnetic field, we show the large-scale
dynamo is well-ordered in the thinner accretion disk models, but fails to develop the characteristic
“butterfly” pattern when the scale height ratio is increased, a feature which is also reflected in the
power spectra. Additionally, we calculate the dynamo α-parameter and generate synthetic light
curves. Using an emission proxy, we find the disks have markedly different characters as stochastic
photometric fluctuations have a larger amplitude when the dynamo is unordered.

Subject headings: accretion, accretion disks — black hole physics — magnetohydrodynamics (MHD)

1. INTRODUCTION

The accretion of gas onto compact objects remains
a poorly understood astrophysical phenomenon. For
the standard thin accretion disk around a black hole,
the magnetorotational instability (MRI; Velikhov 1959;
Chandrasekhar 1960; Balbus & Hawley 1991) is believed
to be the chief mediator of angular momentum trans-
port. The MRI will quickly destabilize any weakly-
magnetized rotating plasma with a Keplerian-like radial
shear and drive turbulence. Through the turbulence, cor-
related fluctuations in the fluid velocities (the Reynolds
stress Rrφ = ρvRδvφ) and correlated fluctuations in the
magnetic field (the Maxwell stress Mrφ = −BrBφ/4π)
(Balbus et al. 1994) arise which produce a net internal
stress that provides the kinematic viscosity considered
by Shakura & Sunyaev (1973). The dimensionless ratio
between the internal disk stress and gas pressure is

αSS =
〈Mrφ +Rrφ〉

〈P 〉
. (1)

To sustain the magnetic field against dissipation, a mech-
anism must be present to rapidly regenerate field.

The vigorous MRI-driven turbulence and shear ex-
pected in an accretion disk provide conditions that
make it prime territory for the development of a mag-
netic dynamo (Tout & Pringle 1992). Indeed, the self-
organization of the magnetic field on large scales has been
universally observed in simulations of moderately mag-
netized, thin accretion disks. Despite the ubiquity with
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which dynamo behavior develops, the phenomenon re-
mains an enigma and much of the fundamental theory
behind its global growth remains undeveloped.

The large-scale dynamo often presents itself in simula-
tions as a quasiperiodic reversal of the azimuthal field po-
larity. Bundles of field rise as the overmagnetized regions
feel a buoyant force, and spacetime diagrams show a
characteristic “butterfly pattern,” akin to that observed
in the migration of sunspots on the Sun. This behavior is
often interpreted as the evolution of the mean field within
the framework of the αΩ dynamo model, which has two
ingredients. First is the α effect which is sourced in the
induction of azimuthal field from the movement of ra-
dial and the vertical magnetic field in a helical fluid flow
(Krause & Raedler 1980). This acts to generate large-
scale field from small-scale turbulent motions. Second
is the Ω effect which arises through differential rotation
and grows azimuthal magnetic field back from radial and
vertical fields. This seeds the MRI from the large-scale
field and further sustains turbulence allowing the cycle
to continue. For the sake of clarity, we denote the α
effect parameter as αd henceforth to prevent confusion
with the effective Shakura & Sunyaev α-parameter.

Shearing box simulations have been instrumental in
allowing for the detailed exploration of the relation be-
tween the accretion flow and large-scale magnetic field,
thus enabling the assembly of many of the pieces in the
dynamo puzzle. Early simulations demonstrated the sen-
sitivity of the magnetic stresses to the net field spanning
the domain (Hawley et al. 1995; Sano et al. 2004; Pessah
et al. 2007) and that large-scale magnetic cycles with
periods of roughly ten times the orbital period readily
develop (Brandenburg et al. 1995; Lesur & Ogilvie 2008;
Davis et al. 2010; Guan & Gammie 2011; Oishi & Mac
Low 2011). Considering only a local patch of an accre-
tion disk allows for the rigorous investigation of the struc-
ture of the turbulence, including its spectral properties
(Murphy & Pessah 2015; Gogichaishvili et al. 2017) and
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saturation (Bodo et al. 2008; Latter et al. 2009; Ober-
gaulinger et al. 2009; Pessah & Goodman 2009; Pessah
2010), which is important because the large-scale field
grows from turbulent fluctuations.

Ultimately, though, the disk dynamo is a global fea-
ture and studying it requires models with large domains
that properly account for the vertical and radial gradi-
ents in the accretion flow, as well as the coupling of radii
with different evolutionary times. Like their local coun-
terparts, global models find dynamo periods of 10− 20×
the local orbital period (e.g. O’Neill et al. 2011; Beckwith
et al. 2011; Flock et al. 2012; Hawley et al. 2013; Parkin
& Bicknell 2013; Hogg & Reynolds 2016). These sim-
ulations are thin disks with typical thermal scaleheight
ratios of h/r = 0.07 − 0.1. They find that the dynamo
coherently spans roughly ∆r = 10 rg in radius, modu-
lates the accretion disk stresses, and collects into sheets
of azimuthal magnetic field of the same orientation in the
coronal region.

In this paper, we aim to understand how the timing
properties of the dynamo and large-scale magnetic field
evolution depend on accretion disk geometry, i.e. the
disk scaleheight ratio, and if there is a threshold of either
large or small thickness beyond which the large-scale dy-
namo cannot be excited. Exploring this is crucial because
dynamos have been directly invoked to explain time vari-
ability signatures from accreting black holes (King et al.
2004; Mayer & Pringle 2006), as well as in several pe-
ripheral contexts. Examples include dynamo cycles as
a source of the low-frequency quasi-periodic oscillation
(QPO O’Neill et al. 2011), the driver of “propagating
fluctuations” in mass accretion rate (Hogg & Reynolds
2016), and as the trigger behind the secular evolution in
the spectral state transitions (Begelman et al. 2015).

Furthermore, while numerical simulations have estab-
lished the robustness of the dynamo in a standard thin
accretion disk, several cases have been found where the
well-ordered oscillations are altered or vanish in atypical
disk conditions. For instance, using global simulations
of a super-Eddington accretion flow, Jiang et al. (2014)
found that the dynamo period is regular, but slower. The
dynamo can be quenched in a magnetically dominated
disk (Bai & Stone 2013; Salvesen et al. 2016) or if hydro-
dynamic convection acts to mix the field (Coleman et al.
2017). Additionally, the transition in the flow geometry
of a truncated disk and its associated flow dynamics has
been shown to impede the dynamo and lead to a spo-
radic, intermittent oscillation of the large-scale magnetic
field in the inner hot disk (Hogg & Reynolds 2018). Of
course, a lingering concern is always that simulations are
affected by nonphysical sensitivities like resolution and
domain aspect ratios, which have also been shown to
halt the dynamo (Walker & Boldyrev 2017).

To delve into the scaleheight dependence of the mag-
netic dynamo, we constructed a suite of global, MHD
disk models with varying scaleheight ratios. In Section
2 we describe the numerical simulation of these models
including the code details, initial conditions, and reso-
lution properties. In Section 3 we present an analysis
of the large-scale dynamo properties, measure αd values
for each simulation, briefly look at the evolution of the
large-scale helicity in one of our simulations, and discuss
potential observational characteristics of each simulation.
We discuss our results and their broader implications in

Section 4 and provide closing remarks in Section 5.

2. NUMERICAL MODEL

In this paper we consider four well-resolved MHD sim-
ulations of model accretion disks in a pseudo-Newtonian
potential, Equation 6, with scaleheight ratios: h/r =
{0.05, 0.1, 0.2, 0.4}. The goal of this paper is to use these
simulations to understand how the accretion disk geom-
etry affects the properties of the large scale magnetic
field. Hence, we strive for consistency in our models and
to evolve the models for long enough to fully sample the
global dynamo for several cycles. To this end, these sim-
ulations were initialized with the same initial conditions
and each were allowed for evolve for t ≈ 4× 104 GM/c3,
or roughly 650 ISCO orbits.

2.1. Simulation Code

This work uses the second-order accurate PLUTO v4.2
code (Mignone et al. 2007) to solve the equations of ideal
MHD in conservative form,

∂ρ

∂t
+∇ · (ρv) = 0, (2)

∂

∂t
(ρv) +∇ · (ρvv −BB + PI) =−ρ∇Φ, (3)

∂

∂t
(E + ρΦ) +∇ · [(E + P + ρΦ)v −B(v ·B)] =−Λ, (4)

∂B

∂t
= ∇×(v ×B),

where ρ is the gas density, v is the fluid velocity, P is
the gas pressure, B is the magnetic field, I is the unit
rank-two tensor, E is the total energy density of the fluid,

E = u+
1

2
ρ|v|2 +

B2

2
, (5)

and Λ accounts for radiative losses through cooling. All
fluid variables (e.g. ρ, P , T ) are evolved and reported in
a scale-free, normalized form. The hlld Riemann solver
was used to solve the MHD equations in the dimension-
ally unsplit mode. Linear reconstruction is used in space
and the second-order Runge Kutta algorithm is used to
integrate forward in time. As a Godunov code, PLUTO
conserves the total amount of energy in the simulation
except for losses across the boundary and energy removed
through the cooling function. To enforce the ∇ ·B = 0
condition, the method of constrained transport is used.

2.2. Simulation Setups

To remain as consistent as possible between models,
the simulation grids are designed under the following
strategy. Each model is set in spherical coordinates with
θ ∈ [π/2 − 5h/r, π/2 + 5h/r]. As we vary the scale-
height ratio, we keep the number of grid cells in this
direction (Nθ = 248) the same. Uniform grid spacing
is used within ±3 h/r around the disk midplane with
28 zones per scaleheight. A stretched grid is used be-
yond 3 h/r with 40 zones in each of the coronal regions
where there is less small scale structure. The only ex-
ception being the thickest h/r = 0.4 disk, which we only
model with θ ∈ [π/2 − 2.5 h/r, π/2 + 2.5 h/r] and halve
the grid cells, accordingly. The radial range stays the
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TABLE 1
Simulation Parameters

Simulation Total Duration ISCO Orbits Nr Nθ Nφ H/∆θ 〈Qθ〉 〈Qφ〉 〈ΘB〉 〈αSS〉 〈β〉

hr 005 3.58× 104 GM/c3 581.5 1232 248 256 28 15.9 37.7 12.3 0.065 9.1
hr 01 3.88× 104 GM/c3 630.5 616 248 128 28 11.8 30.1 12.4 0.057 10.1
hr 02 4.19× 104 GM/c3 680 308 248 64 28 11.9 28.7 12.4 0.052 10.4
hr 04 4.15× 104 GM/c3 675.5 154 248 32 28 5.7 16.6 11.8 0.026 11.8

same between models (r ∈ [5 rg, 145 rg]) and is divided
into an inner well resolved region used for the analy-
sis (r ∈ [5 rg, 45 rg]) and an outer less resolved region
(r ∈ (45 rg, 145 rg]) that acts as a gas reservoir to mit-
igate artificial effects from draining of the disk mate-
rial that could introduce secular changes in the accre-
tion flows. Logarithmic spacing is used to keep ∆r/r
constant along the grid. The azimuthal (φ ∈ [0, π/3])
domain is also fixed between models and has uniform
spacing in φ. When varying the scaleheight ratio by fac-
tors of 2 between models, we change the number of radial
and azimuthal grid zones to preserve the cell aspect ra-
tio (∆r : ∆r sin θ∆θ : r∆φ ≈ 1 : 1 : 2). This helps
remove any resolution dependencies that could influence
the results and adjusts the integration timestep, which is
set by the Courant condition. The validity of restricting
the φ-domain to φ ∈ [0, π/3] between our models rather
than adjusting it in a similar manner to that used in the
θ-domain is addressed in Appendix A. The full details
of the simulation grids are given in Table 1. Outflow
is allowed through the r and θ boundaries while the φ
boundaries are periodic. Density and pressure floors are
imposed to prevent artificially low or negative values.

A psuedo-Newtonian potential of the form,

Φ = − GM

R− 2rg
, rg ≡

GM

c2
(6)

is used to approximate the dynamics of a general rela-
tivistic flow around a non-rotating black hole. This cap-
tures features like the shear profile and the presence of an
innermost stable circular orbit (ISCO) at r = 6 rg with-
out the computational expense of fully including general
relativity. A γ = 5/3 adiabatic equation of state is used
for the gas; the internal energy density of the gas is hence
given by u = P/(γ − 1).

As the turbulence decays, it deposits energy in the gas
in the form of heat so the disk would tend to become
thicker. To enforce the target disk aspect ratio for each
of the simulations, a Noble et al. (2009) style cooling
function is used to emulate radiative losses. The local
target gas pressure is set to,

Ptarg =
ρv2K(h/r)2

γ
, (7)

where vK is the local Keplerian velocity given by

vK =
GM
√
r

r − 2rg
. (8)

The excess heat is cooled according to,

Λ =
f(P − Ptarg)

τcool
, (9)

where f is a switch function,f = 0.5[(P − Ptarg)/|P −

Fig. 1.— Time variability of disk scaleheight ratios for hr 005
(dotted line), hr 01 (dot-dash line), hr 02 (dashed line), and hr 04
(solid line).

Ptarg|+ 1], and τcool is the cooling time which we set to
the local orbital period.

The maintenance and stability of the target disk scale-
heights is of paramount importance in our simulations so
that we can clearly isolate any disk height dependences.
Figure 1 shows the time variability in of average scale-
height ratio for the simulations. For each radial element
in each data dump we calculate the geometric scaleheight
ratio

h(r)

r
=

〈√∫
(θ(r)− θ̄(r))2ρdΩ∫

ρdΩ

〉
, (10)

where dΩ = sin θdθdφ is the solid angle element in spher-
ical coordinates and,

θ̄(r) =

∫
θ(r)ρdΩ∫
ρdΩ

(11)

is the average polar angle of the gas. The total disk-
averaged scaleheight is calculated for each instant by
weighting every radial bin by its width to account for the
nonuniform spacing of the grid in the r-coordinate. This
shows the cooling function keeps our target scaleheight
throughout the duration of each simulation. Turbulence
introduces small fluctuations in the disk scaleheight ra-
tio, but no worrisome trends are present in the hr 01,
hr 02, and hr 04 simulations. In the time trace of the
hr 005 simulation there is a residual transient from ini-
tialization that artificially inflates the disk, but it decays
quickly. It has no significant influence on our study, but
does appear in synthetic light curves presented in Section
3.5 where we discuss it further.

2.3. Initial Conditions
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The simulations are initialized to a steady-state α-disk
like solution:

ρ(R, θ) = ρ0R
−3/2 exp

(
− z2

2c2sR
3

)
(12)

where ρ0 is a normalization, R = r sin θ is the cylindrical
radius, and z = r cos θ is the vertical disk height. The gas
pressure is set from the density, P = c2sρ. The velocity
field is set such that the azimuthal velocity has the local
Keplerian value (vK) and vr = vθ = 0.

We set a weak magnetic field (〈β〉 = 〈Pgas/Pmag〉 =
200) from a vector potential to guarantee the divergence
free condition is satisfied to machine level precision. The
initial field configuration is logarithmically spaced loops
with a vertical taper function in the upper atmosphere
with the form,

Ar = 0, (13)

Aθ = 0, (14)

Aφ = A0p
1
2 e−(z/h)

4

R sin

(
π log(R/2)

h

)
. (15)

In the early evolution of each model, these field loops feel
the radial shear of the disk and the gas is destabilized by
the MRI, which goes nonlinear and drives turbulence.

2.4. Convergence

To assess the overall convergence and consistency be-
tween the models, we apply several resolvability and con-
vergence metrics. The results of these diagnostics are
presented in Table 1. All averages are taken over the
portion of the simulations used the analysis and taken
within the volume of the simulation domain contained
within two scaleheights above and below the disk where
the dynamo behavior originates.

The resolution of the grid in simulation zones per disk
scaleheight provides the simplest measure of the resolv-
ability. Several studies (e.g. Sorathia et al. 2012; Hawley
et al. 2013) have shown around 30 vertical zones per disk
scaleheight offers a crude threshold near where the tur-
bulence is resolved well enough to capture the small-scale
evolution, and hence motivated our grid design. We use
the corresponding “quality factors” to probe how well the
simulation grid samples characteristic MRI wavelength,
λMRI = 2πvA/Ω, where vA is the Alfvén speed. For each
simulation, we calculate the average quality factor in the
θ and φ directions,

Qθ =
λMRI,θ

R∆θ
(16)

and

Qφ =
λMRI,φ

R∆φ
. (17)

Values of Qθ > 6 − 8 have been shown to properly cap-
ture the linear growth of the MRI (Hawley & Stone 1995;
Sano et al. 2004; Flock et al. 2010) and a stricter thresh-
old of Qθ > 10 and Qφ > 20 (Hawley et al. 2011; So-
rathia et al. 2012; Hawley et al. 2013) has been estab-
lished as adequate to capture the nonlinear growth of
the instability. Finally, we measure the saturation of the

anisotropic MRI driven turbulence through the average
in-plane magnetic tilt angle,

ΘB = − arctan

(〈
Br
Bφ

〉)
. (18)

This quantifies the characteristic orientation of the mag-
netic field, a value that theoretical estimates predict to
be near ΘB ≈ 15◦ (Guan et al. 2009; Pessah 2010). Mea-
surements in prior accretion disk simulations (e.g. Haw-
ley et al. 2011; Sorathia et al. 2012; Hawley et al. 2013;
Hogg & Reynolds 2016) find the turbulence saturates at
a somewhat lower tilt of ΘB ≈ 11− 13◦.

By all measures, our models are well-resolved and have
similar properties, with the exception of the hr 04 model.
Given the remarkable consistency of the other models, it
is difficult to attribute the sudden decrease in the qual-
ity factors, effective α-parameter, and increase in plasma
β to the changes in the grid, although we are simulating
half of the physical domain (i.e. only ±2.5h/r). One clue
into the discrepancy is that the inconsistent diagnostics
all depend on the strength of the magnetic field, which
appears to be lower by roughly half compared to the ther-
mal energy. The ΘB value, on the other had, is similar to
the other three models, suggesting the saturation of the
turbulence is the same, but the field doesn’t naturally
grow to the same relative level. A key result of this pa-
per is that the organization of the dynamo in the thicker
disks is impeded and less efficient, so the resolution met-
rics could be biased by this phenomenon. Nevertheless,
when interpreting the following results, it is important to
remain aware of what could be a decrease in the effective
resolution of the hr 04 model.

3. RESULTS

The analysis we conduct is restricted to the final ∆t =
3.15× 104 GM/c3 (512 ISCO orbits) of each simulation.
By allowing the simulations to evolve for at least 100
ISCO orbits, we avoid transient nonphysical behaviors
that only exist as the simulated disks relax into a qua-
sisteady state. The simulation data is written out every
∆t = 30.7812 GM/c3, or every half of an orbital period
at the ISCO, providing 1024 snapshots for the analysis.

3.1. The Global Dynamo

We begin by first presenting spacetime diagrams of the
toroidal magnetic field in Figure 2. The spacetime dia-
grams were calculated by taking azimuthal averages of
Bφ at each time step at r = 15 rg in each of our four
simulations. The large-scale dynamo organizes itself into
global, vertically stratified sheets of field of similar polar-
ity. These diagrams effectively trace the evolution of the
cross section of this pattern at a chosen radii, which typ-
ically reveals a vertically propagating pattern that has
a characteristic acceleration, evidenced by the increasing
slope. Snapshots of the normal pattern’s structure are
presented in Figure 9 of Hogg & Reynolds (2016).

The different behaviors between the models are imme-
diately apparent with the most striking difference being
the breakdown of the regular, periodic oscillation pattern
with increasing disk thickness. The thinnest disk in the
hr 005 model shows a cyclical building of the field and
decay with a reversal of the orientation. Near the mid-
plane it is fairly stochastic, but in the atmosphere the or-
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Fig. 2.— Spacetime diagrams of the azimuthally averaged Bφ at r = 15 rg for hr 005(top), hr 01 (second from top), hr 02 (second
from bottom), and hr 04 (bottom). Positive values (red) indicate orientation of the field in the positive φ-direction while negative (blue)
indicates an opposite orientation. Color intensity corresponds to the averaged magnitude.

ganization develops as the overmagnetized regions buoy-
antly rise. In the hr 01 model, a pattern is still present,
but it is less well organized compared to the hr 005 sim-
ulation. In hr 02 and hr 04 there are hints the organized
oscillations attempt to develop, but patchy, chaotic fluc-
tuations dominate the behavior. However, there is still
field amplification and regeneration throughout the sim-
ulation, despite the lack of a regular, ordered pattern.

Further inspection of the hr 005 and hr 01 models
reveal other interesting features of the butterfly pat-
tern. There are periods of the simulation where the
dynamo seemingly fails to reverse, for instance t =
1.5 × 104 GM/c3 and t = 1.7 × 104 GM/c3 in hr 005.
Additionally, the large-scale field generated by the dy-
namo can evolve independently in the upper and lower
coronal regions of each disk. At some points in the sim-
ulations the magnetic fields are aligned in the upper at-
mospheres, like at t = 6.0 × 103GM/c3 in the hr 005
simulation, but then at a later time the fields are an-
tialigned, like t = 2.1 × 104GM/c3. This is the same
change in parity observed in Flock et al. (2012). Several
factors contribute to this, including irregularities in the
local evolution of the dynamo cycle and a global influence
from the coupling of field since the field buoyantly rises
as coronal sheets of field with similar polarity (Beckwith
et al. 2011; Hogg & Reynolds 2016). These butterfly di-
agrams can be compared to those observed from local
shearing box simulations, e.g. Davis et al. (2010) and Si-
mon et al. (2012), which tend to have more more regular
periods.

Turning to the thicker disks in the hr 02 and hr 04
models, we see the amplification of the field is typically
localized. Enhanced regions of strong field form, but they
are disrupted before they can collect in the midplane. In
both of these simulations we see that even though the
pockets of strengthened field do not trace out a butter-
fly pattern per se, they still typically originate near the
midplane and are expelled into the disk atmosphere, pre-
sumably due to their magnetic buoyancy like before. In
the hr 02 model, there are periods when the butterfly
pattern almost takes hold, but it often only in one hemi-
sphere and traces out an inconsistent rise.

The power spectral density (PSD) at one scaleheight
above the disk midpane, shown in Figure 3, more clearly
show the presence or absence of periodicity in the dy-

namo. The PSDs were calculated as P (ν) = ν|f̃(ν)|2
where f̃(ν) is the Fourier transform of the time sequence
of the variable of interest,

f̃(ν) =

∫
f(t)e−2πiνtdt. (19)

Here, we consider the power spectra of the azimuthally
averaged Bφ at each radial grid point. We also average
Bφ over the θ direction from π/2 − 1.25 h/r to π/2 −
0.75 h/r to get a better sense of the dominating mean
field.

The hr 005 and hr 01 simulations both show a dis-
tinct band of power at one tenth of the orbital frequency
similar to the dynamo periods found in Gressel (2010),
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Fig. 3.— PSDs of Bφ at 1.5h above the disk midplane for hr 005 (top left), hr 01 (top right), hr 02 (bottom left), and hr 04 (bottom
right). Darker colors (black) represents greater power in that frequency bin for a given radius. The orbital frequency is shown with the red
line and ten times the orbital frequency is shown with the blue line.

TABLE 2
Dynamo Coefficient Fits

Simulation αd,uh Offsetuh αd,lh Offsetlh

hr 005 (−9.5± 0.1)× 10−5 (−0.4± 1.2)× 10−8 (1.0± 0.1)× 10−4 (0.4± 1.5)× 10−8

hr 01 (−2.1± 0.2)× 10−4 (−1± 7)× 10−8 (1.7± 0.2)× 10−4 (−1± 7)× 10−8

hr 02 (−2.2± 0.4)× 10−4 (−4± 2)× 10−7 (2.2± 0.4)× 10−4 (−1.9± 1.8)× 10−7

hr 04 (−2.3± 0.5)× 10−4 (−2.1± 1.0)× 10−7 (1.7± 0.4)× 10−4 (−1.5± 1.2)× 10−7

Davis et al. (2010), Beckwith et al. (2011), Simon et al.
(2011), and Simon et al. (2012). This band of enhanced
power spans roughly a factor of three in frequency space
and extends radially approximately 10rg, consistent with
the PSDs seen in thin accretion simulations, like those
presented in O’Neill et al. (2011) and Hogg & Reynolds
(2016). At lower frequencies there is very little power
and at higher frequencies there is residual power up to a
dissipative scale.

The power spectra of the hr 02 and hr 04 simulations
tell a different story, though. In these simulations there
are no discernible bands of power indicating they lack
any unique timescales where the field has significant os-
cillations. There is power at all frequencies below the
orbital frequency, indicating the large-scale dynamo is
operating; however, it is neither organized nor confined
to a specific timescale. This confirms the seeming ran-
domness and disorder seen in the respective butterfly di-

agrams, suggesting there is no single characteristic scale
on which energy is injected, rather the disorder allows
the flow to injecting energy over a range of scales, which
then decay. Nevertheless, the amplitude of the power is
nearly equal between all of the models, indicating that
there is not a dearth of power in the low-frequency field
fluctuations in the thicker disk simulations.

3.2. Measuring αd

Next, we seek to probe the heart of the dynamo mech-
anism by measuring the parameterization of the “α-
effect.” The large-scale dynamo is typically interpreted
through a mean field theory. To produce the large scale
toroidal field, there must be a net electromagnetic force
(EMF) to induce a magnetic field in the azimuthal direc-
tion, which is predominately governed by:

〈E ′φ〉 = αd,φφ〈Bφ〉. (20)
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Like other works (e.g. the local shearing box simulations
of Brandenburg et al. (1995), Brandenburg & Donner
(1997), Ziegler & Rüdiger (2001), and Davis et al. (2010)
and global disk model of Flock et al. (2012)), we neglect
contributions to the α effect from the less influential αd,rr
component and also higher order derivatives of the mag-
netic field from the diffusivity tensor (usually denoted as
η̃), thereby allowing us to approximate αφφ through a
simple correlation between the turbulent EMF,

E ′φ = v′rB
′
θ − v′θB′r, (21)

where X ′ of a flow variable X indicates its fluctuating
component taken by subtracting off its azimuthal average
(X ′ = X−〈X〉), and the average toroidal magnetic field.

We calculate the volume averaged E ′φ and Bφ in the
upper and lower hemispheres of each simulation for each
data dump. The regions in which we take these averages
spans the entire azimuthal domain, radially from r =
15 rg to r = 15 + 15(h/r), and poloidally from h to 2h
in the upper hemisphere and −h to −2h in the lower
hemisphere. The correlation of 〈E ′φ〉 and 〈Bφ〉 is then
measured by fitting a simple line of the form,

〈E ′φ〉 = αd〈Bφ〉+ C, (22)

where C is an allowed vertical offset. The fitting was
done using a Bayesian MCMC method. Figure 4 shows
the data, best fit, and parameter contour plots of the
fit parameters for the upper hemisphere of the different
models, and Figure 5 shows the corresponding results for
the lower hemispheres. Table 2 summarizes the best fits.

We find that αd consistently has an amplitude of
|αd| ≈ 1 − 2 × 10−4 in all of these disk simulations
with the upper hemisphere having a negative sign and
the lower hemisphere having a positive sign, similar to
Brandenburg et al. (1995) and Davis et al. (2010), but
opposite of other works. Furthermore, they are a slightly
weaker than other values reported in the literature. The
increase in the scatter of the 〈E ′φ〉 and 〈Bφ〉 correlations
with increased disk thickness indicates the diffusive term
becomes a larger contributor.

3.3. Magnetic Helicity

As an exploratory exercise to bore into the organiza-
tion, or lack thereof, in the dynamo pattern, we sought
to measure the large- and small-scale magnetic helici-
ties, current helicities, and kinetic helicities in the four
simulations. Teasing out the time variability of these
quantities from the chaotic turbulence ultimately proved
not to be feasible with these models, and we were not
able to overcome the inherent noise from differencing the
stochastically fluctuating fluid variables. However, we
were able to find a correlation between the large-scale
magnetic helicity density,

Hm = 〈Ā · B̄〉 (23)

with the average 〈Bφ〉 in the midplane of the hr 005 sim-
ulation, shown in Figure 6. Since the large-scale helicity
density is a volume integrated quantity, it was calcu-
lated in a subdomain of the global simulation. We chose
a reference radius, rref = 15 rg, and then defined the
subdomain to span radially from rref to rref (1 + h/r),
vertically from the midplane (θ = π/2) to one disk scale-
height (θ = π/2 − h/r), and in azimuth over the entire

φ-domain. The subdomain was designed this way for sev-
eral reasons. The radial location was selected to be far
enough from the ISCO that turbulent edge effects (Kro-
lik & Hawley 2002) are miniscule. Moving away from
the inner boundary also has the additional benefit that
the dynamo period is longer, so our effective time reso-
lution is increased by approximately a factor of 4, but it
is still short enough we can still study the behavior for
many evolutionary times. We are primarily interested in
where the dynamo pattern originates and first organizes
itself, which drives us to the midplane of the disk. How-
ever, since the helicity production is roughly asymmetric
about the midplane (Blackman 2012), we must only sam-
ple one hemisphere so that there is not cancelation, and
we choose the upper hemisphere by default. We tested
several vertical extents and determined that the general
trends held no matter where we placed the upper vertical
boundary of the subdomain within one disk scaleheight
above the midplane, but the noise was minimized at the
upper limit.

Typically, Hm evolves with 〈Bφ〉. When 〈Bφ〉 oscil-
lates and changes sign, Hm seems to vary with it. There
are periods when they cycle seems to stall, like from
t = 1.0 × 104 GM/c3 to t = 1.3 × 104 GM/c3, where
Hm similarly shows no real evolution. This is either be-
cause the helicity is not produced or because there is no
net production due global effects like cancelation with
neighboring radii. Noise dominates much of the signal,
but the linear correlation of Hm and 〈Bφ〉, as measured
with the Pearson-r statistic, is r = 0.38 which indicated
a moderate correlation. Over different periods of the
simulation it changes, though. For instance, if the corre-
lation coefficient is only calculated over the last half of
the simulation, it is higher at r = 0.58.

This hint that the large-scale magnetic helicity is tied
to the organization of the dynamo should help motivate
further study of the role that the flow helicity plays in
regulating the global dynamo in future investigations.
There is a wealth of literature showing a connection be-
tween the dynamo and its quenching to the flow he-
licity from analytic studies (Blackman & Brandenburg
2002; Brandenburg & Subramanian 2005; Vishniac &
Cho 2001). Explaining the large-scale accretion disk dy-
namo through this lens offers great prospect and could
yield a greater understanding of the global disk evolution.
Of particular interest is how the helicity produced at dif-
ferent radii, and consequently on different timescales, in-
teracts. Unlike the magnetic field which decays through
turbulence to larger wave numbers, the magnetic helic-
ity undergoes an inverse cascade and relaxes to smaller
wave numbers, which could effectively couple radii as the
helicities add or cancel, depending on the interference of
the production patterns. Unraveling these connections
may explain some of the radial coherence, as well as the
intermittencies and irregularities observed in global dy-
namos.

3.4. Mass Accretion Rates

Having seen the role of organization on the magnetic
field, we can begin to ask how it effects the disk evolution.
One of the clearest ways to detect the dynamo influence
is in the mass accretion rate

Ṁ =

∫
ρvRRsin(θ)dφdθ, (24)



8
(a) Upper Hemisphere hr 005

(b) Upper Hemisphere hr 01

(c) Upper Hemisphere hr 02

(d) Upper Hemisphere hr 04

Fig. 4.— Scatter plots of instantaneous values of 〈Bφ〉 vs 〈E ′φ〉 in the upper coronal regions of the disks (black dots) with the best fitted
lines (left column) and the best parameter fits from our MCMC modeling with 1σ and 2σ contours (right column). The color coding in
the lefthand panels shows the density distribution of the points, estimated from a Gaussian kernel.
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(a) Lower Hemisphere hr 005

(b) Lower Hemisphere hr 01

(c) Lower Hemisphere hr 02

(d) Lower Hemisphere hr 04

Fig. 5.— Scatter plots of instantaneous values of 〈Bφ〉 vs 〈E ′φ〉 in the lower coronal regions of the disks (black dots) with the best fitted
lines (left column) and the best parameter fits from our MCMC modeling with 1σ and 2σ contours (right column). The color coding in
the lefthand panels shows the density distribution of the points, estimated from a Gaussian kernel.
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Fig. 6.— Average Bφ (dark black line) and Hm (thin blue line) for hr 005 at r = 15 rg . The two time traces have a Pearson-r statistic
of 0.4.

(a) hr 005 Mass Accretion Rate Distribution
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(b) hr 01 Mass Accretion Rate Distribution
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(c) hr 02 Mass Accretion Rate Distribution

0.00 0.05 0.10 0.15 0.20 0.25 0.30
M

0

20

40

60

80

Oc
cu

ra
nc

e

Normal Fit
Log-normal Fit

(d) hr 04 Mass Accretion Rate Distribution
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Fig. 7.— Mass accretion rate distributions at the inner boundary of hr 005 (a), hr 01 (b), hr 02 (c), and hr 04 (d). The distributions
have been fit by a Gaussian function (red) and log-normal function (blue lines), and they are all better fit by a log-normal function. As
noted in the text, we are primarily concerned with the qualitative shape rather than the quantitative amplitude since all simulations were
initialized with the same density normalizations and the total disk “mass” scales with increasing thickness.
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where we take R to be the inner simulation boundary,
calculated from the instantaneous values of density and
velocity for each data dump. In Hogg & Reynolds (2016)
we showed that the large-scale dynamo drove propagat-
ing fluctuations which appear as a telling log-normal dis-
tribution in the large-scale accretion rate due to the mod-
ulation of the effective disk viscosity. Figure 7 shows the
histograms of Ṁ for each of the models. Note, that in the
hr 005 model, there is a residual transient in Ṁ from the
initialization so the first 100 orbits of the analysis which
has been removed to prevent contamination of the his-
togram. In all four of our models the histograms have a
characteristic skewed distribution. We fit both normal

P (x)N = P0e
−(x−µ)2/2σ2

(25)

and log-normal,

P (x)LN =
P0

x
e−(lnx−µ)

2/2σ2

(26)

functions to the Ṁ distributions, where x is the data
count rate in each bin, σ is the distribution width, and
µ is the peak. In every case they are better fit by the
fast rise and slow decay in the high valued tail of the
log-normal distribution. The normal distributions fail to
match the shapes of the distributions at high and low Ṁ
and consistently are shifted to the right of the peak in the
distribution. As a reminder, the simulations are evolved
in a scale free form and the amplitude of the mass ac-
cretion rate is largely set by the density in the model.
We are primarily interested in the consistent qualitative
behavior here, since all of the models are initialized with
the same density normalization. This means the inte-
grated “mass” of the disk is larger with increasing scale-
height, which, when coupled with the shorter evolution-
ary timescales and shorter accretion timescales, should
give higher Ṁ with progressively larger scaleheights.

3.5. Observational Signatures

On their own, the distinct dynamo behaviors we find
are interesting, but greater physical meaning can be
found by connecting the unique manifestations to ob-
servables. The rich photometric variability seen from
accreting black holes encodes information about the ac-
cretion process, with the imprint of the dynamo being
a likely component of this signal. Since we neglect de-
tailed radiative physics in order to save computational
resources, we explore this with an emission proxy. We
use a scheme employed by other global accretion disk
simulations (e.g. Hawley & Krolik (2001), Armitage &
Reynolds (2003) & Hogg & Reynolds (2016)) based on
the internal disk stress. Adopting Eqn 9 from Hubeny &
Hubeny (1998), the local flux at the photosphere of the
disk to dissipation is given by

F =
3

2

√
GM

r3

(
A

B

)∫ h

0

BrBφdz, (27)

where A and B are relativistic correction factors given
by

A = 1− 2GM

rc2
(28)

and

B = 1− 3GM

rc2
. (29)

For each data dump we integrate F within r = 25 rg to
calculate a bolometric “luminosity,” L. The region be-
yond r = 25 rg is excluded because of residual transient
behavior from the initialization of the disk which affects
the very early part of our analysis phase. This also con-
taminates the very early part of the hr 005 lightcurve,
which we ignore in our calculation of its standard de-
viation. We normalize by the mean luminosity to ex-
press the variability in a fractional form and because the
models are evolved dimensionless, scale free form. The
lightcurves are shown in Figure 8.

The most obvious difference in the synthetic light
curves is the level of organization provided by the relative
coherence of the dynamo. Prior numerical studies have
shown the stress in the disk is modulated by the dynamo
(Davis et al. 2010; Flock et al. 2012; Hogg & Reynolds
2016), which provides a link to the disk heating as the
energy injected by the dynamo is ultimately deposited as
heat. In our simulations, we see that the thinner disks
with a more organized dynamo display slower undula-
tions and a smaller fractional amplitude. As measured
by the standard deviation,

σ =

√√√√ 1

N

N∑
i=1

(
Li − L

)2
, (30)

the typical fractional amplitude of the hr 005 model is
σ = 0.14 and for the hr 01 model it is σ = 0.20.

The thicker disks display rapid, incoherent variability
with a much larger fractional amplitude. In the hr 02
model, σ = 0.24 and in the h 04 model, σ = 0.35. In
these models, the fluctuations are much more “flarey”
and the light curves show rapid brightening episodes and
subsequent troughs. For instance, in the hr 02 model
from t = 1.1× 104 GM/c3 to t = 1.3× 104 GM/c3 when
the disk luminosity would appear to diminish by 36%,
only to quickly rebrighten by a factor of three. Later,
from t = 1.7×104GM/c3 to t = 1.9×104GM/c3, the disk
dips to half its baseline value, only to return quickly. The
hr 04 model shows less structure than the hr 02 model,
with fast, stochastic fluctuations of roughly factors of 2.5,
i.e. fluctuations between 0.6 and 1.5 on several occasions.
At two points there are large excursions from the mean
with flares that peak at over twice the mean value.

4. DISCUSSION

The results from the suite of accretion disk simula-
tions we present here highlight how poorly the dynamo
mechanism in accretion disks is understood and the ad-
ditional work that is needed to fully leverage this phe-
nomenon as an observational probe. The crux of this
work is that the large-scale dynamo can fail to organize
into the low-frequency, quasiperiodic butterfly pattern
typically seen in time traces of the vertical, azimuthally
averaged toroidal magnetic field (〈Bφ〉). Instead, in the
thicker accretion disks the field is amplified in a stochas-
tic way and on small-scales with no obvious structure
or order, but still at low frequencies. This challenges
the ubiquity of a self-organized large-scale dynamo ap-
pearing as a feature of black hole disks. Consequently,
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this could translate into observable signatures as the syn-
thetic lightcurves we generate reflect the degree of order
in the magnetic field.

Unfortunately, we cannot pin down a detailed reason
for why the dynamo fails to organize when the disk thick-
ness is increased. However, these results suggest a sepa-
ration between turbulent fluctuating scales and the dom-
inant scale of the flow is needed for the dynamo organi-
zation. Considering the MHD turbulence spectrally has
led to “shell” models of the interactions in Fourier space
where it has been shown that the magnetic and velocity
fluctuations both decay locally to larger wavenumber.
However, the interactions between the two occur non-
locally (Moffatt 1978; Mininni 2011) as long wavelength
velocity fluctuations are needed to stretch the magnetic
field lines and long wavelength magnetic field fluctuations
are needed to apply a net Lorentz force. Understanding
the details of how the spectral behaviors and interactions
of the turbulence depend on disk thickness may help to
tie the development of the large-scale dynamo into this
framework.

Related to this, the different turbulent scales may
change the effective magnetic Prandtl number, Prm.
This could be a viable explanation since the effective dif-
fusivity changes because of the larger turbulent eddies,
which we find evidence for here in the increased scatter of
the 〈E ′φ〉 and 〈Bφ〉 correlations. Guan & Gammie (2009)
explored the role of the turbulent Prm in MHD accretion
disks, and found it increased with increasing scaleheight.
The excitation of the MRI has been shown to depend on
Prm (Fromang & Papaloizou 2007; Fromang et al. 2007),
and simulations of forced turbulence have shown that the
large-scale dynamo excitation also has a dependence on
Prm, depending on how the turbulence is injected (Bran-
denburg 2014). Since the effective viscosity, as measured
by αss, is roughly constant, this could show the role of
the larger eddies increasing the turbulent magnetic dif-
fusivity and connect to disappearance of they dynamo
cycle at low Prm (Riols et al. 2015).

Investigating the role of helicity in the disk may help
in deciphering the differences between the thick and thin
disks. The evolution and influence of the flow helicities
is expected to be intimately linked to global field behav-
ior, and could be important in the excitation and orga-
nization of a large scale dynamo (e.g. Frick et al. 2006;
Käpylä & Korpi 2011; Blackman 2012, 2015). However,
it is unclear the role that it plays in the global behav-
ior of an accretion disk. The clear case of a relation
between the large-scale magnetic helicity with the az-
imuthally averaged toroidal field in the hr 005 simula-
tion offers a glimpse into the the behavior. Pursuing this
connection more may help to explain the curious changes
in the parity between the two disk hemispheres, as well
as abnormal features like the intermittency and “failed
reversals” in the field oscillations because they may be
related to the ability of the disk to assemble the large-
scale field into an ordered pattern and its ability to shed
the helicity generated by the turbulence.

Fundamentally, all of these scenarios are related and
could all be contributing to the disorganization of the
dynamo on some level. Moving forward, there are sev-
eral routes that could clarify why the large scale dynamo
failed to organize. Using test field methods, first applied

to the geodynamo (Schrinner et al. 2005, 2007), to mea-
sure the mean-field dynamo coefficients in these global
runs is possibility the most important next step as it has
been effectively used to characterize the dynamo in local
shearing box simulations (Gressel 2010; Gressel & Pes-
sah 2015). Additionally, expanding the simulations to
encompass the full 2π azimuthal domain could be signif-
icant for fully capturing of the large scale structure. To
run the simulations for our planned duration, we were
restricted to a truncated azimuthal domain out of neces-
sity. Our simulations were already very computational
expensive, with hr 01 requiring 2 million CPU hours and
hr 005 requiring over 7 million CPU hours, so extending
the domain with proper resolution like we had in these
models was impractical. A number of dedicated resolu-
tion studies have shown that the properties of the MRI
turbulence can depend on the domain and it is possible
we are simply seeing an analogous sensitivity in the dy-
namo. In Appendix A we present two test simulations
of hr 02 and hr 04 that have φ-domains extended to
∆φ = π. These simulations show identical behavior to
their compliments used in this analysis, which offers en-
couraging evidence the grid design is not the root cause
of the unstructured pattern. This bolsters these results,
but subtle numerical effects remain a lingering concern.
Guided by this first attempt to explore the scaleheight
dependence of the dynamo, we can tailor our simulations
to target the two interesting regimes. Furthermore, we
were intentionally very conservative with the length of
the initialization phase in these simulations to prevent
transients from distorting our results, and it could likely
be shorted to redirect computational resources in the fu-
ture.

As a note, in Hogg & Reynolds (2018) we studied an
MHD model of a “truncated” accretion disk where there
is believed to be a transition region between a hot, ra-
diatively inner accretion flow and a cooler, radiatively
efficient disk. In the outer thin disk (h/r = 0.1), we
find the large scale dynamo readily develops and is sus-
tained. However, in inner region where the disk thickens
(h/r > 0.2), we find it fails to develop, similar to this
study. In the truncated disk the flow had the added
component of an outflow originating from the truncation
zone, so it is not an isolated system like those presented
here, but the failed organization of the dynamo in the
thicker disk is reminiscent of that detailed in this paper.
The truncated disk scenario essentially provides a com-
posite accretion flow and demonstrates that it truly is a
scale height dependence since the two distinct flow be-
haviors develop in close proximity and can even interact.

The observational consequences of changing disk
height are of great interest. The lightcurves we present in
Figure 8 show that the temporal behavior of the photo-
metric variability from emission should be distinct, which
meshes with empirical results. Accreting stellar mass
black holes in black hole binaries (BHBs) and supermas-
sive black holes in active galactic nuclei (AGNs) display a
bifurcation in spectral states that is typically attributed
to the radiative efficiency of the system. In the low-hard
state of BHBs and in low-luminosity AGNs (LLAGNs)
the accretion flow is presumed to be radiatively ineffi-
cient and hot. The accretion flow should, therefore, take
on a thicker disk geometry since it cannot radiate away
its thermal energy. High-soft state BHBs and the typ-
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Fig. 8.— Synthetic lightcurves calculated from the disk cooling for hr 005 (top), hr 01 (second to top), hr 02 (second to bottom), and
hr 04 (bottom). The cooling has been normalized to the mean value of the lightcurve to express the amplitude in terms of a fractional
amplitude.

ical Seyfert-like AGNs and quasars, on the other hand,
should be able to radiate efficiently, so the accretion is
expected to occur through a thin disk.

Making a direct association between the lightcurves
from our simulations to astrophysical black hole sys-
tems is not straightforward since the disk emission is
produced by different processes and in different wave-
bands for the thin and thick disk cases, but it never-
theless seems to hold. Indeed, this scheme matches the
trends from BHBs as they change states during outburst
(Remillard & McClintock 2006). Variability in AGNs is
poorly understood, but the different timing properties
of LLAGNs compared to Seyfert-like AGNs may be a
clue about their ability to host a large-scale dynamo in
the disk. LLAGNs typically have rapid variability e.g.
NGC 4258 (Markowitz & Uttley 2005) and NGC 3226
(Binder et al. 2009), but they are less well studied their
higher Eddington ratio counterparts. Extensive moni-
toring campaigns have been completed across the elec-
tromagnetic spectrum for Seyfert-like AGNs which show
variability on a thermal time, ttherm ≈ 1/αΩ, (Kelly
et al. 2009; MacLeod et al. 2010; Kasliwal et al. 2017),
roughly the same timescale that the dynamo oscillations
might present themselves.

The results we present here may have additional ob-
servational impacts as a number of other variable pro-
cesses could stem from the presence of a well-ordered

large scale dynamo. Features like dynamo driven low-
frequency QPOs could be impacted by the departure
from the assumed cyclical behavior, so it is prudent to
revisit their utility as probes of the central black hole
mass and spin (e.g. Gierliński et al. 2008; Zhou et al.
2010; Pasham et al. 2014; Pan et al. 2016) to verify the
assumptions that serve as the foundation of the mass
scaling remain valid since they will not appear if they
dynamo is unordered.

In Hogg & Reynolds (2016) we presented a detailed
analysis of a simulated thin disk where propagating fluc-
tuations in mass accretion rate naturally developed from
the turbulence. At its core, the telling nonlinear signa-
tures that are commonly observed, i.e. log-normal flux
distribution, linear relations between the RMS and flux
level of the variability, and interband coherence where
the harder emission lags the softer emission, arise from
the multiplicative combination of stochastic fluctuations
in the mass accretion rate. As we emphasized the name
“propagating fluctuations” is a misnomer since the phe-
nomenon is fundamentally just the preservation of the
fluctuation pattern as angular momentum is diffusively
redistributed according to the canonical disk equation
(Pringle 1981),

∂Σ

∂t
=

3

R

∂

∂R

[
R

1
2
∂

∂R
(νΣR

1
2 )
]
. (31)
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A key component in the growth of propagating fluctua-
tions in mass accretion rate is that the effective viscosity
must be modulated at low enough frequencies that turbu-
lent fluctuations do not wipe out the growth of the struc-
ture in the accretion flow (Cowperthwaite & Reynolds
2014). The results presented here show that this condi-
tion is met, even when the dynamo is not ordered into its
standard cycle because low-frequency power is still seen
in the 2D PSDs. The log-normal Ṁ distributions we find
in these simulations further confirms that the growth of
propagating fluctuations is hardy enough to occur in an
accretion disk regardless of the dynamo organization, the
dynamo just simply needs operate.

There has been a recent push to understand the dy-
namo beyond the standard thin accretion disk, and from
these efforts a narrative is developing that it is possible
to impede or alter the growth of the large-scale dynamo.
Here, we present one more example of modification of the
large-scale dynamo. Further investigation into the pecu-
liarities of the dynamo are needed and warranted to get a
better handle on when it is a reliable source of variabil-
ity and when it cannot contribute to the observational
signatures. This discussion is meant to highlight several
ways in which commonly observed features could be im-
pacted by the breakdown of the dynamo organization,
but it is by no means complete. There are additional
ramifications beyond these that could be significant for
interpreting the accretion flow dynamics around a black
hole.

5. CONCLUSION

With this study, we sought to clarify how the dynamo
fits into the larger puzzle of black hole accretion. Using a
suite of four global, MHD accretion disk simulations with
scale height ratios h/r = {0.05, 0.1, 0.2, 0.4}, we expose
a scaleheight dependence in the ability of an accretion
disk to organize the large-scale dynamo. In summary,
our top-line results from these simulations are:

1. Low-frequency, ordered oscillations in the az-
imuthal magnetic field from the large-scale dynamo
are present in the hr 005 (h/r = 0.05) and hr 01
(h/r = 0.1) models, but are increasingly absent in
the hr 02 (h/r = 0.2) and hr 04 (h/r = 0.4) mod-
els.

2. When the organized large-scale dynamo is present
in the thinner disks, there is a coherent band of

power in the PSD of azimuthally average toroidal
magnetic field, 〈Bφ〉, at approximately 10× the lo-
cal orbital period. In the thicker accretion disks
where the large-scale dynamo is unorganized, the
PSD is featureless with power on all timescales,
down the the lowest frequencies we can probe with
the duration of our simulations.

3. Calculation of αd through correlations between
〈Bφ〉 and the turbulent electromotive force, 〈E ′φ〉,
in the coronal regions of the simulations yield sim-
ilar values across our models. In the upper hemi-
sphere of the simulations αd is negative, while in
the lower hemisphere it is positive.

4. In synthetic light curves produced through a proxy,
the presence of a large-scale dynamo is related to
the level of order and amplitude of the fluctua-
tions. The light curves of the thicker disks display
large amplitude, stochastic fluctuations, which re-
flects the lack of organization in the accretion flow.
The thinner disk simulations, in comparison, show
a dearth of large amplitude variation and smaller-
scale, slower undulations instead.

As we continue to assemble the accretion puzzle and
interpret variability from accreting black holes, explor-
ing the details of the underlying physics is an impor-
tant pursuit. The spectrotemporal behavior provides a
crucial window into these systems, but a first principles
understanding of their origin remains elusive. This hin-
ders the ability to leverage the observational signatures
to their full potential and offers an opportunity for fu-
ture advancement. The odd dynamo behavior we detail
here has the immediate implication that the large-scale
dynamo shows markedly different appearance in thicker
accretion disks compared to its well characterized behav-
ior in thin disks, which could have broader importance
in the global accretion disk evolution.
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APPENDIX

EXTENDED DOMAIN TESTS

To confirm the results from our analysis, we ran two additional simulations of the thickest accretion disks, hr 02 pi
and hr 04 pi. These simulations were constructed identically to their ∆φ = π/3 counterparts, but with a φ-domain
extended to ∆φ = π. The resolution element is preserved by tripling the number of zones in the azimuthal direction
so that hr 02 pi has NR × Nθ × Nφ = 308 × 248 × 192 zones and hr 04 pi has NR × Nθ × Nφ = 154 × 248 × 96
zones. The hr 02 pi model was integrated for 680 ISCO orbits, or t = 4.19 × 104 GM/c3. The hr 02 pi model was
also integrated for 680 ISCO orbits, or t = 4.19× 104 GM/c3. As before, only the final ∆t = 3.15× 104 GM/c3 (512
ISCO orbits) is used in the analysis.

Extending the φ-domain places these models within a similar regime to hr 005 and hr 01 in terms of the number
of disk scale heights per azimuthal expanse. Since the large-scale dynamo depends on the self-organization of the
MRI-driven turbulence, a smaller domain might not fit the global flow structure that leads to this behavior. However,

http://hpcc.umd.edu
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Fig. 9.— Spacetime diagrams of the azimuthally averaged Bφ at r = 15 rg for the extended π-domain hr 02 (top) and hr 04 (bottom)
tests. Positive values (red) indicate orientation of the field in the positive φ-direction while negative (blue) indicates an opposite orientation.
Color intensity corresponds to the averaged magnitude.

Fig. 10.— PSDs of Bφ at 1.5h above the disk midplane for the extended π-domain hr 02 (left), and hr 04 (right) tests. Darker colors
(black) represents greater power in that frequency bin for a given radius. The orbital frequency is shown with the red line and ten times
the orbital frequency is shown with the blue line.

these models would allow similar butterfly patterns to develop in these thicker disk simulations if our previous results
were solely due to a failure to capture the global modes.

Figure 9 shows spacetime diagrams of the azimuthally averaged Bφ of hr 02 pi and hr 04 pi at r = 15rg. As seen in
hr 02, the dynamo attempts to establish a butterfly pattern, but it is much more irregular and disorganized than that
seen in the hr 005 and hr 01 models. Sometimes an organized field dominates for a long portion of the simulation, i.e.
t = 1.3−1.5×104GM/c3 in the upper hemisphere of the simulation, while at others it is only momentary present. The
hr 04 pi simulations shows no organization, like hr 04. Fluctuations in the field are rapid, disorganized, and chaotic
which resembles nothing more than turbulent fluctuations. Figure 10 shows the PSDs of hr 02 pi and hr 04 pi. Like
Figure 3, the thick disks show broad bands of power with no evidence of the typical band of power found at one tenth
the orbital frequency. The similarity between the PSDs offers secondary evidence the behavior of the magnetic field
evolution does not depend on the domain size.

For this analysis, these ∆φ = π simulations offer compelling evidence that the breakdown in the dynamo pattern
with increasing disk scaleheight is a real effect and not a nuance that arises from the grid scheme. In Section 4
we offer several refinements for future studies that will help alleviate any remaining concern of numerical artifacts.
Incorporating these improvements with additional features, like a test-field method to probe the field evolution, will
provide valuable insights into the dynamo process.
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