422 research outputs found

    Mediastinal goiter diagnosed by functional imaging

    Get PDF
    A 63-year-old asymptomatic woman with cured Hodgkin diseases presented for restaging. The chest computed tomography showed a mass at the right side of the upper mediastinum. The benignity and the origin of the tissue were unknown. First, we performed a bronchoscopy-guided biopsy but without success. In the next step, we initiated radionuclide imaging with technetium-99m pertechnetate (Tc-99m) and radioiodine (I-123). Low uptake of Tc-99m and intense accumulation of I-123 after 2 and 24 h to the mediastinal mass suggested that the mass was a mediastinal goiter. Based on iodine uptake and the fact that our patient had no symptoms of tracheal compression, we decide to go for a radioiodine therapy

    Spontaneous adaptation explains why people act faster when being imitated

    Get PDF
    The human ability to perform joint actions is often attributed to high-level cognitive processes. For example, the finding that action leaders act faster when imitated by their partners has been interpreted as evidence for anticipation of the other’s actions (Pfister, Dignath, Hommel, & Kunde, 2013). In two experiments, we showed that a low-level mechanism can account for this finding. Action leaders were faster when imitated than when counterimitated, but only if they could observe their partner’s actions (Exp. 1). Crucially, when due to our manipulation the partner’s imitative actions became slower than the counterimitative actions, leaders also became slower when they were imitated, and faster when counterimitated (Exp. 2). Our results suggest that spontaneous temporal adaptation is a key mechanism in joint action tasks. We argue for a reconsideration of other phenomena that have traditionally been attributed solely to high-level processes

    Mapping of hormones and cortisol responses in patients after Lyme neuroborreliosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Persistent symptoms after treatment for neuroborreliosis are common for reasons mainly unknown. These symptoms are often unspecific and could be caused by dysfunctions in endocrine systems, an issue that has not been previously addressed systematically. We therefore mapped hormone levels in patients with previous confirmed Lyme neuroborreliosis of different outcomes and compared them with a healthy control group.</p> <p>Methods</p> <p>Twenty patients of a retrospective cohort of patients treated for definite Lyme neuroborreliosis were recruited 2.3 to 3.7 years (median 2.7) after diagnosis, together with 23 healthy controls. Lyme neuroborreliosis patients were stratified into two groups according to a symptom/sign score. All participants underwent anthropometric and physiological investigation as well as an extensive biochemical endocrine investigation including a short high-dose adrenocorticotropic hormone stimulation (Synacthen<sup>®</sup>) test. In addition to hormonal status, we also examined electrolytes, 25-hydroxy-vitamin D and interleukin-6.</p> <p>Results</p> <p>Eight patients (40%) had pronounced symptoms 2-3 years after treatment. This group had a higher cortisol response to synacthen as compared with both controls and the Lyme neuroborreliosis patients without remaining symptoms (p < 0.001 for both comparisons). No other significant differences in the various baseline biochemical parameters, anthropometric or physiological data could be detected across groups.</p> <p>Conclusions</p> <p>Apart from a positive association between the occurrence of long-lasting complaints after Lyme neuroborreliosis and cortisol response to synacthen, no corticotropic insufficiency or other serious hormonal dysfunction was found to be associated with remaining symptoms after treatment for Lyme neuroborreliosis.</p

    Rapid Environmental Change over the Past Decade Revealed by Isotopic Analysis of the California Mussel in the Northeast Pacific

    Get PDF
    The anthropogenic input of fossil fuel carbon into the atmosphere results in increased carbon dioxide (CO2) into the oceans, a process that lowers seawater pH, decreases alkalinity and can inhibit the production of shell material. Corrosive water has recently been documented in the northeast Pacific, along with a rapid decline in seawater pH over the past decade. A lack of instrumentation prior to the 1990s means that we have no indication whether these carbon cycle changes have precedence or are a response to recent anthropogenic CO2 inputs. We analyzed stable carbon and oxygen isotopes (δ13C, δ18O) of decade-old California mussel shells (Mytilus californianus) in the context of an instrumental seawater record of the same length. We further compared modern shells to shells from 1000 to 1340 years BP and from the 1960s to the present and show declines in the δ13C of modern shells that have no historical precedent. Our finding of decline in another shelled mollusk (limpet) and our extensive environmental data show that these δ13C declines are unexplained by changes to the coastal food web, upwelling regime, or local circulation. Our observed decline in shell δ13C parallels other signs of rapid changes to the nearshore carbon cycle in the Pacific, including a decline in pH that is an order of magnitude greater than predicted by an equilibrium response to rising atmospheric CO2, the presence of low pH water throughout the region, and a record of a similarly steep decline in δ13C in algae in the Gulf of Alaska. These unprecedented changes and the lack of a clear causal variable underscores the need for better quantifying carbon dynamics in nearshore environments

    Cell Cycle-Dependent Microtubule-Based Dynamic Transport of Cytoplasmic Dynein in Mammalian Cells

    Get PDF
    BACKGROUND:Cytoplasmic dynein complex is a large multi-subunit microtubule (MT)-associated molecular motor involved in various cellular functions including organelle positioning, vesicle transport and cell division. However, regulatory mechanism of the cell-cycle dependent distribution of dynein has not fully been understood. METHODOLOGY/PRINCIPAL FINDINGS:Here we report live-cell imaging of cytoplasmic dynein in HeLa cells, by expressing multifunctional green fluorescent protein (mfGFP)-tagged 74-kDa intermediate chain (IC74). IC74-mfGFP was successfully incorporated into functional dynein complex. In interphase, dynein moved bi-directionally along with MTs, which might carry cargos such as transport vesicles. A substantial fraction of dynein moved toward cell periphery together with EB1, a member of MT plus end-tracking proteins (+TIPs), suggesting +TIPs-mediated transport of dynein. In late-interphase and prophase, dynein was localized at the centrosomes and the radial MT array. In prometaphase and metaphase, dynein was localized at spindle MTs where it frequently moved from spindle poles toward chromosomes or cell cortex. +TIPs may be involved in the transport of spindle dyneins. Possible kinetochore and cortical dyneins were also observed. CONCLUSIONS AND SIGNIFICANCE:These findings suggest that cytoplasmic dynein is transported to the site of action in preparation for the following cellular events, primarily by the MT-based transport. The MT-based transport may have greater advantage than simple diffusion of soluble dynein in rapid and efficient transport of the limited concentration of the protein

    Is the water footprint an appropriate tool for forestry and forest products: The Fennoscandian case

    Get PDF
    The water footprint by the Water Footprint Network (WF) is an ambitious tool for measuring human appropriation and promoting sustainable use of fresh water. Using recent case studies and examples from water-abundant Fennoscandia, we consider whether it is an appropriate tool for evaluating the water use of forestry and forest-based products. We show that aggregating catchment level water consumption over a product life cycle does not consider fresh water as a renewable resource and is inconsistent with the principles of the hydrologic cycle. Currently, the WF assumes that all evapotranspiration (ET) from forests is a human appropriation of water although ET from managed forests in Fennoscandia is indistinguishable from that of unmanaged forests. We suggest that ET should not be included in the water footprint of rain-fed forestry and forest-based products. Tools for sustainable water management should always contextualize water use and water impacts with local water availability and environmental sensitivity

    Adaptive Mutations in the JC Virus Protein Capsid Are Associated with Progressive Multifocal Leukoencephalopathy (PML)

    Get PDF
    PML is a progressive and mostly fatal demyelinating disease caused by JC virus infection and destruction of infected oligodendrocytes in multiple brain foci of susceptible individuals. While JC virus is highly prevalent in the human population, PML is a rare disease that exclusively afflicts only a small percentage of immunocompromised individuals including those affected by HIV (AIDS) or immunosuppressive drugs. Viral- and/or host-specific factors, and not simply immune status, must be at play to account for the very large discrepancy between viral prevalence and low disease incidence. Here, we show that several amino acids on the surface of the JC virus capsid protein VP1 display accelerated evolution in viral sequences isolated from PML patients but not in sequences isolated from healthy subjects. We provide strong evidence that at least some of these mutations are involved in binding of sialic acid, a known receptor for the JC virus. Using statistical methods of molecular evolution, we performed a comprehensive analysis of JC virus VP1 sequences isolated from 55 PML patients and 253 sequences isolated from the urine of healthy individuals and found that a subset of amino acids found exclusively among PML VP1 sequences is acquired via adaptive evolution. By modeling of the 3-D structure of the JC virus capsid, we showed that these residues are located within the sialic acid binding site, a JC virus receptor for cell infection. Finally, we go on to demonstrate the involvement of some of these sites in receptor binding by demonstrating a profound reduction in hemagglutination properties of viral-like particles made of the VP1 protein carrying these mutations. Collectively, these results suggest that a more virulent PML causing phenotype of JC virus is acquired via adaptive evolution that changes viral specificity for its cellular receptor(s)

    Degradation of p53 by Human Alphapapillomavirus E6 Proteins Shows a Stronger Correlation with Phylogeny than Oncogenicity

    Get PDF
    Human Papillomavirus (HPV) E6 induced p53 degradation is thought to be an essential activity by which high-risk human Alphapapillomaviruses (alpha-HPVs) contribute to cervical cancer development. However, most of our understanding is derived from the comparison of HPV16 and HPV11. These two viruses are relatively distinct viruses, making the extrapolation of these results difficult. In the present study, we expand the tested strains (types) to include members of all known HPV species groups within the Alphapapillomavirus genus.We report the biochemical activity of E6 proteins from 27 HPV types representing all alpha-HPV species groups to degrade p53 in human cells. Expression of E6 from all HPV types epidemiologically classified as group 1 carcinogens significantly reduced p53 levels. However, several types not associated with cancer (e.g., HPV53, HPV70 and HPV71) were equally active in degrading p53. HPV types within species groups alpha 5, 6, 7, 9 and 11 share a most recent common ancestor (MRCA) and all contain E6 ORFs that degrade p53. A unique exception, HPV71 E6 ORF that degraded p53 was outside this clade and is one of the most prevalent HPV types infecting the cervix in a population-based study of 10,000 women. Alignment of E6 ORFs identified an amino acid site that was highly correlated with the biochemical ability to degrade p53. Alteration of this amino acid in HPV71 E6 abrogated its ability to degrade p53, while alteration of this site in HPV71-related HPV90 and HPV106 E6s enhanced their capacity to degrade p53.These data suggest that the alpha-HPV E6 proteins' ability to degrade p53 is an evolved phenotype inherited from a most recent common ancestor of the high-risk species that does not always segregate with carcinogenicity. In addition, we identified an amino-acid residue strongly correlated with viral p53 degrading potential
    corecore