321 research outputs found

    The holographic principle

    Get PDF
    There is strong evidence that the area of any surface limits the information content of adjacent spacetime regions, at 10^(69) bits per square meter. We review the developments that have led to the recognition of this entropy bound, placing special emphasis on the quantum properties of black holes. The construction of light-sheets, which associate relevant spacetime regions to any given surface, is discussed in detail. We explain how the bound is tested and demonstrate its validity in a wide range of examples. A universal relation between geometry and information is thus uncovered. It has yet to be explained. The holographic principle asserts that its origin must lie in the number of fundamental degrees of freedom involved in a unified description of spacetime and matter. It must be manifest in an underlying quantum theory of gravity. We survey some successes and challenges in implementing the holographic principle.Comment: 52 pages, 10 figures, invited review for Rev. Mod. Phys; v2: reference adde

    Non-conformal Hydrodynamics in Einstein-dilaton Theory

    Full text link
    In the Einestein-dilaton theory with a Liouville potential parameterized by η\eta, we find a Schwarzschild-type black hole solution. This black hole solution, whose asymptotic geometry is described by the warped metric, is thermodynamically stable only for 0η<20 \le \eta < 2. Applying the gauge/gravity duality, we find that the dual gauge theory represents a non-conformal thermal system with the equation of state depending on η\eta. After turning on the bulk vector fluctuations with and without a dilaton coupling, we calculate the charge diffusion constant, which indicates that the life time of the quasi normal mode decreases with η\eta. Interestingly, the vector fluctuation with the dilaton coupling shows that the DC conductivity increases with temperature, a feature commonly found in electrolytes.Comment: 27 pages and 2 figures, published in JHE

    Bianchi Type-II String Cosmological Models in Normal Gauge for Lyra's Manifold with Constant Deceleration Parameter

    Full text link
    The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological models representing massive strings in normal gauge for Lyra's manifold by applying the variation law for generalized Hubble's parameter that yields a constant value of deceleration parameter. The variation law for Hubble's parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential form. Using these two forms, Einstein's modified field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The energy-momentum tensor for such string as formulated by Letelier (1983) is used to construct massive string cosmological models for which we assume that the expansion (θ\theta) in the model is proportional to the component σ 11\sigma^{1}_{~1} of the shear tensor σij\sigma^{j}_{i}. This condition leads to A=(BC)mA = (BC)^{m}, where A, B and C are the metric coefficients and m is proportionality constant. Our models are in accelerating phase which is consistent to the recent observations. It has been found that the displacement vector β\beta behaves like cosmological term Λ\Lambda in the normal gauge treatment and the solutions are consistent with recent observations of SNe Ia. It has been found that massive strings dominate in the decelerating universe whereas strings dominate in the accelerating universe. Some physical and geometric behaviour of these models are also discussed.Comment: 24 pages, 10 figure

    Cosmology of the selfaccelerating third order Galileon

    Full text link
    In this paper we start from the original formulation of the galileon model with the original choice for couplings to gravity. Within this framework we find that there is still a subset of possible Lagrangians that give selfaccelerating solutions with stable spherically symmetric solutions. This is a certain constrained subset of the third order galileon which has not been explored before. We develop and explore the background cosmological evolution of this model drawing intuition from other even more restricted galileon models. The numerical results confirm the presence of selfacceleration, but also reveals a possible instability with respect to galileon perturbations.Comment: 30 pages, 24 figure

    Effect of inhomogeneity of the Universe on a gravitationally bound local system: A no-go result for explaining the secular increase in the astronomical unit

    Get PDF
    We will investigate the influence of the inhomogeneity of the universe, especially that of the Lema{\^i}tre-Tolman-Bondi (LTB) model, on a gravitationally bound local system such as the solar system. We concentrate on the dynamical perturbation to the planetary motion and derive the leading order effect generated from the LTB model. It will be shown that there appear not only a well-known cosmological effect arisen from the homogeneous and isotropic model, such as the Robertson-Walker (RW) model, but also the additional terms due to the radial inhomogeneity of the LTB model. We will also apply the obtained results to the problem of secular increase in the astronomical unit, reported by Krasinsky and Brumberg (2004), and imply that the inhomogeneity of the universe cannot have a significant effect for explaining the observed dAU/dt=15±4 [m/century]d{\rm AU}/dt = 15 \pm 4 ~{\rm [m/century]}.Comment: 12 pages, no figure, accepted for publication in Journal of Astrophysics and Astronom

    Classical Conformal Blocks and Accessory Parameters from Isomonodromic Deformations

    Get PDF
    Classical conformal blocks naturally appear in the large central charge limit of 2D Virasoro conformal blocks. In the AdS3/CFT2AdS_{3}/CFT_{2} correspondence, they are related to classical bulk actions and are used to calculate entanglement entropy and geodesic lengths. In this work, we discuss the identification of classical conformal blocks and the Painlev\'e VI action showing how isomonodromic deformations naturally appear in this context. We recover the accessory parameter expansion of Heun's equation from the isomonodromic τ\tau-function. We also discuss how the c=1c = 1 expansion of the τ\tau-function leads to a novel approach to calculate the 4-point classical conformal block.Comment: 32+10 pages, 2 figures; v3: upgraded notation, discussion on moduli space and monodromies, numerical and analytic checks; v2: added refs, fixed emai

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    An Electron Fixed Target Experiment to Search for a New Vector Boson A' Decaying to e+e-

    Full text link
    We describe an experiment to search for a new vector boson A' with weak coupling alpha' > 6 x 10^{-8} alpha to electrons (alpha=e^2/4pi) in the mass range 65 MeV < m_A' < 550 MeV. New vector bosons with such small couplings arise naturally from a small kinetic mixing of the "dark photon" A' with the photon -- one of the very few ways in which new forces can couple to the Standard Model -- and have received considerable attention as an explanation of various dark matter related anomalies. A' bosons are produced by radiation off an electron beam, and could appear as narrow resonances with small production cross-section in the trident e+e- spectrum. We summarize the experimental approach described in a proposal submitted to Jefferson Laboratory's PAC35, PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory (CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten wire mesh targets, and measures the resulting e+e- pairs to search for the A' using the High Resolution Spectrometer and the septum magnet in Hall A. With a ~1 month run, APEX will achieve very good sensitivity because the statistics of e+e- pairs will be ~10,000 times larger in the explored mass range than any previous search for the A' boson. These statistics and the excellent mass resolution of the spectrometers allow sensitivity to alpha'/alpha one to three orders of magnitude below current limits, in a region of parameter space of great theoretical and phenomenological interest. Similar experiments could also be performed at other facilities, such as the Mainz Microtron.Comment: 19 pages, 12 figures, 2 table

    Aspects of holography for theories with hyperscaling violation

    Get PDF
    We analyze various aspects of the recently proposed holographic theories with general dynamical critical exponent z and hyperscaling violation exponent θ\theta. We first find the basic constraints on z,θz, \theta from the gravity side, and compute the stress-energy tensor expectation values and scalar two-point functions. Massive correlators exhibit a nontrivial exponential behavior at long distances, controlled by θ\theta. At short distance, the two-point functions become power-law, with a universal form for θ>0\theta > 0. Next, the calculation of the holographic entanglement entropy reveals the existence of novel phases which violate the area law. The entropy in these phases has a behavior that interpolates between that of a Fermi surface and that exhibited by systems with extensive entanglement entropy. Finally, we describe microscopic embeddings of some θ0\theta \neq 0 metrics into full string theory models -- these metrics characterize large regions of the parameter space of Dp-brane metrics for p3p\neq 3. For instance, the theory of N D2-branes in IIA supergravity has z=1 and θ=1/3\theta = -1/3 over a wide range of scales, at large gsNg_s N.Comment: 35 pages; v2: new references added; v3: proper reference [14] added; v4: minor clarification

    The Cosmological Constant

    Get PDF
    This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity (http://www.livingreviews.org/), December 199
    corecore