998 research outputs found

    Evaluating machine learning techniques for predicting power spectra from reionization simulations

    Get PDF
    Upcoming experiments such as the SKA will provide huge quantities of data. Fast modelling of the high-redshift 21cm signal will be crucial for efficiently comparing these data sets with theory. The most detailed theoretical predictions currently come from numerical simulations and from faster but less accurate semi-numerical simulations. Recently, machine learning techniques have been proposed to emulate the behaviour of these semi-numerical simulations with drastically reduced time and computing cost. We compare the viability of five such machine learning techniques for emulating the 21cm power spectrum of the publicly-available code SimFast21. Our best emulator is a multilayer perceptron with three hidden layers, reproducing SimFast21 power spectra 10810^8 times faster than the simulation with 4% mean squared error averaged across all redshifts and input parameters. The other techniques (interpolation, Gaussian processes regression, and support vector machine) have slower prediction times and worse prediction accuracy than the multilayer perceptron. All our emulators can make predictions at any redshift and scale, which gives more flexible predictions but results in significantly worse prediction accuracy at lower redshifts. We then present a proof-of-concept technique for mapping between two different simulations, exploiting our best emulator's fast prediction speed. We demonstrate this technique to find a mapping between SimFast21 and another publicly-available code 21cmFAST. We observe a noticeable offset between the simulations for some regions of the input space. Such techniques could potentially be used as a bridge between fast semi-numerical simulations and accurate numerical radiative transfer simulations

    State of the art: refinement of multiple sequence alignments

    Get PDF
    BACKGROUND: Accurate multiple sequence alignments of proteins are very important in computational biology today. Despite the numerous efforts made in this field, all alignment strategies have certain shortcomings resulting in alignments that are not always correct. Refinement of existing alignment can prove to be an intelligent choice considering the increasing importance of high quality alignments in large scale high-throughput analysis. RESULTS: We provide an extensive comparison of the performance of the alignment refinement algorithms. The accuracy and efficiency of the refinement programs are compared using the 3D structure-based alignments in the BAliBASE benchmark database as well as manually curated high quality alignments from Conserved Domain Database (CDD). CONCLUSION: Comparison of performance for refined alignments revealed that despite the absence of dramatic improvements, our refinement method, REFINER, which uses conserved regions as constraints performs better in improving the alignments generated by different alignment algorithms. In most cases REFINER produces a higher-scoring, modestly improved alignment that does not deteriorate the well-conserved regions of the original alignment

    Proceedings of the Second Annual Conference of the MidSouth Computational Biology and Bioinformatics Society

    Get PDF
    The MCBIOS 2004 conference brought together regional researchers and students in biology, computer science and bioinformatics on October 7th-9th 2004 to present their latest work. This editorial describes the conference itself and introduces the twelve peer-reviewed manuscripts accepted for publication in the Proceedings of the MCBIOS 2004 Conference. These manuscripts included new methods for analysis of high-throughput gene expression experiments, EST clustering, analysis of mass spectrometry data and genomic analysi

    High apex predator biomass on remote Pacific islands

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 26 (2007): 47-51, doi:10.1007/s00338-006-0158-x.On coral reefs in Palmyra—a central Pacific atoll with limited fishing pressure—total fish biomass is 428 and 299% greater than on reefs in nearby Christmas and Fanning Islands. Large apex predators –groupers, sharks, snappers, and jacks larger than 50 cm in length- account for 56% of total fish biomass in Palmyra on average, but only 7% and 3% on Christmas and Fanning. These biomass proportions are remarkably similar to those previously reported for the remote and uninhabited Northwest Hawaiian Islands (NWHI) and densely populated Main Hawaiian Islands (MHI), although Palmyra’s reefs are dominated in biomass by sharks (44% of the total), whereas the NWHI by jacks (39%). Herbivorous fish biomass was also greater on Palmyra than on Christmas and Fanning (343% and 207%, respectively). These results and previous findings indicate that remote, uninhabited islands support high levels of consumers, and highlight the importance of healthy coral reef ecosystems as reference points for assessment of human impacts and establishment of restoration goals

    A model for reactive porous transport during re-wetting of hardened concrete

    Full text link
    A mathematical model is developed that captures the transport of liquid water in hardened concrete, as well as the chemical reactions that occur between the imbibed water and the residual calcium silicate compounds residing in the porous concrete matrix. The main hypothesis in this model is that the reaction product -- calcium silicate hydrate gel -- clogs the pores within the concrete thereby hindering water transport. Numerical simulations are employed to determine the sensitivity of the model solution to changes in various physical parameters, and compare to experimental results available in the literature.Comment: 30 page

    <i>Trypanosoma brucei rhodesiense</i> transmitted by a single tsetse fly bite in vervet monkeys as a model of human African trypanosomiasis

    Get PDF
    Sleeping sickness is caused by a species of trypanosome blood parasite that is transmitted by tsetse flies. To understand better how infection with this parasite leads to disease, we provide here the most detailed description yet of the course of infection and disease onset in vervet monkeys. One infected tsetse fly was allowed to feed on each host individual, and in all cases infections were successful. The characteristics of infection and disease were similar in all hosts, but the rate of progression varied considerably. Parasites were first detected in the blood 4-10 days after infection, showing that migration of parasites from the site of fly bite was very rapid. Anaemia was a key feature of disease, with a reduction in the numbers and average size of red blood cells and associated decline in numbers of platelets and white blood cells. One to six weeks after infection, parasites were observed in the cerebrospinal fluid (CSF), indicating that they had moved from the blood into the brain; this was associated with a white cell infiltration. This study shows that fly-transmitted infection in vervets accurately mimics human disease and provides a robust model to understand better how sleeping sickness develops

    Environmental differences between sites control the diet and nutrition of the carnivorous plant Drosera rotundifolia

    Get PDF
    Background and aims: Carnivorous plants are sensitive to small changes in resource availability, but few previous studies have examined how differences in nutrient and prey availability affect investment in and the benefit of carnivory. We studied the impact of site-level differences in resource availability on ecophysiological traits of carnivory for Drosera rotundifolia L. Methods: We measured prey availability, investment in carnivory (leaf stickiness), prey capture and diet of plants growing in two bogs with differences in N deposition and plant available N: Cors Fochno (0.62 g m−2 yr.−1, 353 μg l−1), Whixall Moss (1.37 g m−2 yr.−1, 1505 μg l−1). The total N amount per plant and the contributions of prey/root N to the plants’ N budget were calculated using a single isotope natural abundance method. Results: Plants at Whixall Moss invested less in carnivory, were less likely to capture prey, and were less reliant on prey-derived N (25.5% compared with 49.4%). Actual prey capture did not differ between sites. Diet composition differed – Cors Fochno plants captured 62% greater proportions of Diptera. Conclusions: Our results show site-level differences in plant diet and nutrition consistent with differences in resource availability. Similarity in actual prey capture may be explained by differences in leaf stickiness and prey abundance

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine
    • …
    corecore