140 research outputs found

    Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes.

    Get PDF
    Background: MicroRNAs (miRNAs) in circulation have emerged as promising biomarkers. In this study, we aimed to identify a circulating miRNA signature for osteoarthritis (OA) patients and in combination with bioinformatics analysis to evaluate the utility of selected differentially expressed miRNAs in the serum as potential OA biomarkers. Methods: Serum samples were collected from 12 primary OA patients, and 12 healthy individuals were screened using the Agilent Human miRNA Microarray platform interrogating 2549 miRNAs. Receiver Operating Characteristic (ROC) curves were constructed to evaluate the diagnostic performance of the deregulated miRNAs. Expression levels of selected miRNAs were validated by quantitative real-time PCR (qRT-PCR) in all serum and in articular cartilage samples from OA patients (n = 12) and healthy individuals (n = 7). Bioinformatics analysis was used to investigate the involved pathways and target genes for the above miRNAs. Results: We identified 279 differentially expressed miRNAs in the serum of OA patients compared to controls. Two hundred and five miRNAs (73.5%) were upregulated and 74 (26.5%) downregulated. ROC analysis revealed that 77 miRNAs had area under the curve (AUC) > 0.8 and p < 0.05. Bioinformatics analysis in the 77 miRNAs revealed that their target genes were involved in multiple signaling pathways associated with OA, among which FoxO, mTOR, Wnt, pI3K/akt, TGF-β signaling pathways, ECM-receptor interaction, and fatty acid biosynthesis. qRT-PCR validation in seven selected out of the 77 miRNAs revealed 3 significantly downregulated miRNAs (hsa-miR-33b-3p, hsa-miR-671-3p, and hsa-miR-140-3p) in the serum of OA patients, which were in silico predicted to be enriched in pathways involved in metabolic processes. Target-gene analysis of hsa-miR-140-3p, hsa-miR-33b-3p, and hsa-miR-671-3p revealed that InsR and IGFR1 were common targets of all three miRNAs, highlighting their involvement in regulation of metabolic processes that contribute to OA pathology. Hsa-miR-140-3p and hsa-miR-671-3p expression levels were consistently downregulated in articular cartilage of OA patients compared to healthy individuals. Conclusions: A serum miRNA signature was established for the first time using high density resolution miR-arrays in OA patients. We identified a three-miRNA signature, hsa-miR-140-3p, hsa-miR-671-3p, and hsa-miR-33b-3p, in the serum of OA patients, predicted to regulate metabolic processes, which could serve as a potential biomarker for the evaluation of OA risk and progression.Peer reviewedFinal Published versio

    Disentangling unclear nuclear breakup channels of beryllium-9 using the three-axis Dalitz plot

    Get PDF
    The three-axis Dalitz plot has been applied to the breakup of a nucleus into unequal mass fragments for the first time. The Dalitz plot allows clear identification of the various breakup channels of 9Be → 2α + n process. The method has allowed the branching ratio for the 6.38 MeV level in9Be to be provisionally calculated when examining the 9Be(4He, α)ααn reaction. The effects of non-uniform angular distributions on the Dalitz plot must still be properly investigated along with the effects of contaminant reaction channels. It is proposed that this method could be used to determine the breakup branching ratio of a newly-measured level in this nucleus

    Home-based isometric exercise training induced reductions resting blood pressure

    Get PDF
    Purpose: Isometric exercise training (IET) reduces resting blood pressure (BP). Most previous protocols impose exercise barriers which undermine its effectiveness as a potential physical therapy for altering BP. An inexpensive, home-based programme would promote IET as a valuable tool in the fight against hypertension. The aims of this study were: (a) to investigate whether home-based wall squat training could successfully reduce resting BP, and (b) to explore the physiological variables that might mediate a change in resting BP. Methods: Twenty-eight healthy normotensive males were randomly assigned to a control and a 4 week home-based IET intervention using a crossover design with a 4 week ‘washout’ period in-between. Wall squat training was completed 3x weekly over 4 weeks with 48 hours between sessions. Each session comprised 4x 2 minute bouts of wall squat exercise performed at a participant-specific knee joint angle relative to a target HR of 95% HRpeak, with 2 minutes rest between bouts. Resting heart rate, BP, cardiac output, total peripheral resistance and stroke volume were taken at baseline and post each condition. Results: Resting BP (systolic = -4 ± 5, diastolic = -3 ± 3 and mean arterial = -3 ± 3 mmHg), cardiac output (-0.54 ± 0.66 L∙min-1) and heart rate (-5 ± 7 beats∙min-1) were all reduced following IET, with no change in total peripheral resistance or stroke volume compared to the control. Conclusion: These findings suggest the wall squat provides an effective method for reducing resting BP in the home resulting primarily from a reduction in resting heart rate

    Patients with rheumatoid arthritis have an altered circulatory aggrecan profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rheumatoid arthritis (RA) is a chronic auto-immune disease with extensive articular cartilage destruction. Aggrecan depletion, mediated by aggrecanases is one of the first signs of early cartilage erosion. We investigated, whether measurement of aggrecan and fragments thereof in serum, could be used as biomarkers for joint-disease in RA patients and furthermore characterized the fragments found in the circulation.</p> <p>Methods</p> <p>The study consisted of 38 patients, 12 males (62.2 ± 16.0 years) and 26 females (59.8 ± 20.7 years) diagnosed with RA: 41.5 ± 27.5 mm/h erythrocyte sedimentation rate (ESR), 38.4 ± 34.7 mg/ml C-reactive protein (CRP) and 4.8 ± 1.7 disease activity score (DAS) and 108 healthy age-matched controls. Aggrecan levels were measured using two immunoassays, i.e. the <sup>374</sup>ARGSVI-G2 sandwich ELISA measuring aggrecanase-mediated aggrecan degradation and the G1/G2 sandwich assay, detecting aggrecan molecules containing G1 and/or G2 (total aggrecan) We further characterized serum samples by western blots, by using monoclonal antibodies F-78, binding to G1 and G2, or by BC-3, detecting the aggrecanase-generated N-terminal <sup>374</sup>ARGSVI neo-epitope.</p> <p>Results</p> <p>Total aggrecan levels in RA patients were significantly decreased from 824.8 ± 31 ng/ml in healthy controls to 570.5 ± 30 ng/ml (31% decrease, P < 0.0001), as measured by the G1/G2 ELISA. Western blot analysis with F-78 showed one strong band at 10 kDa, and weaker bands at 25 and 45 kDa in both healthy controls and RA patients. In contrast, staining for aggrecanase-activity revealed only one strong band in RA patients of 45 kDa.</p> <p>Conclusion</p> <p>This is the first study, which characterizes different aggrecan fragments in human serum. The data strongly suggests that total aggrecan levels, i.e. aggrecan molecules containing G1 and/or G2 are lower in RA patients, and that RA patients have at least one specific subpopulation of aggrecan fragments, namely aggrecanse generated <sup>374</sup>ARGSVI fragments. Further clinical studies are needed to investigate the potential of G1/G2 as a structure-related biochemical marker in destructive joint-diseases.</p

    Mechanical Strain Stabilizes Reconstituted Collagen Fibrils against Enzymatic Degradation by Mammalian Collagenase Matrix Metalloproteinase 8 (MMP-8)

    Get PDF
    Collagen, a triple-helical, self-organizing protein, is the predominant structural protein in mammals. It is found in bone, ligament, tendon, cartilage, intervertebral disc, skin, blood vessel, and cornea. We have recently postulated that fibrillar collagens (and their complementary enzymes) comprise the basis of a smart structural system which appears to support the retention of molecules in fibrils which are under tensile mechanical strain. The theory suggests that the mechanisms which drive the preferential accumulation of collagen in loaded tissue operate at the molecular level and are not solely cell-driven. The concept reduces control of matrix morphology to an interaction between molecules and the most relevant, physical, and persistent signal: mechanical strain.The investigation was carried out in an environmentally-controlled microbioreactor in which reconstituted type I collagen micronetworks were gently strained between micropipettes. The strained micronetworks were exposed to active matrix metalloproteinase 8 (MMP-8) and relative degradation rates for loaded and unloaded fibrils were tracked simultaneously using label-free differential interference contrast (DIC) imaging. It was found that applied tensile mechanical strain significantly increased degradation time of loaded fibrils compared to unloaded, paired controls. In many cases, strained fibrils were detectable long after unstrained fibrils were degraded.In this investigation we demonstrate for the first time that applied mechanical strain preferentially preserves collagen fibrils in the presence of a physiologically-important mammalian enzyme: MMP-8. These results have the potential to contribute to our understanding of many collagen matrix phenomena including development, adaptation, remodeling and disease. Additionally, tissue engineering could benefit from the ability to sculpt desired structures from physiologically compatible and mutable collagen

    Giant cell tumor of the uterus: case report and response to chemotherapy

    Get PDF
    BACKGROUND: Giant cell tumor (GCT) is usually a benign but locally aggressive primary bone neoplasm in which monocytic macrophage/osteoclast precursor cells and multinucleated osteoclast-like giant cells infiltrate the tumor. The etiology of GCT is unknown, however the tumor cells of GCT have been reported to produce chemoattractants that can attract osteoclasts and osteoclast precursors. Rarely, GCT can originate at extraosseous sites. More rarely, GCT may exhibit a much more aggressive phenotype. The role of chemotherapy in metastatic GCT is not well defined. CASE PRESENTATION: We report a case of an aggressive GCT of the uterus with rapidly growing lung metastases, and its response to chemotherapy with pegylated-liposomal doxorubicin, ifosfamide, and bevacizumab, along with a review of the literature. CONCLUSION: Aggressive metastasizing GCT may arise in the uterus, and may respond to combination chemotherapy

    Cytokine preconditioning of engineered cartilage provides protection against interleukin-1 insult

    Get PDF
    Research reported in this publication was supported in part by the National Institute of Arthritis and Musculoskeletal and Skin Diseases and National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number R01AR60361, R01AR061988, P41EB002520). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. ART was supported by a National Science Foundation Graduate Fellowship

    Aneuploidy in pluripotent stem cells and implications for cancerous transformation

    Get PDF
    Owing to a unique set of attributes, human pluripotent stem cells (hPSCs) have emerged as a promising cell source for regenerative medicine, disease modeling and drug discovery. Assurance of genetic stability over long term maintenance of hPSCs is pivotal in this endeavor, but hPSCs can adapt to life in culture by acquiring non-random genetic changes that render them more robust and easier to grow. In separate studies between 12.5% and 34% of hPSC lines were found to acquire chromosome abnormalities over time, with the incidence increasing with passage number. The predominant genetic changes found in hPSC lines involve changes in chromosome number and structure (particularly of chromosomes 1, 12, 17 and 20), reminiscent of the changes observed in cancer cells. In this review, we summarize current knowledge on the causes and consequences of aneuploidy in hPSCs and highlight the potential links with genetic changes observed in human cancers and early embryos. We point to the need for comprehensive characterization of mechanisms underpinning both the acquisition of chromosomal abnormalities and selection pressures, which allow mutations to persist in hPSC cultures. Elucidation of these mechanisms will help to design culture conditions that minimize the appearance of aneuploid hPSCs. Moreover, aneuploidy in hPSCs may provide a unique platform to analyse the driving forces behind the genome evolution that may eventually lead to cancerous transformation
    • …
    corecore