813 research outputs found

    Two-Minute k-Space and Time–accelerated Aortic Four-dimensional Flow MRI: Dual-Center Study of Feasibility and Impact on Velocity and Wall Shear Stress Quantification

    Get PDF
    PURPOSE: To investigate the two-center feasibility of highly k-space and time (k-t)–accelerated 2-minute aortic four-dimensional (4D) flow MRI and to evaluate its performance for the quantification of velocities and wall shear stress (WSS). MATERIALS AND METHODS: This cross-sectional study prospectively included 68 participants (center 1, 11 healthy volunteers [mean age ± standard deviation, 61 years ± 15] and 16 patients with aortic disease [mean age, 60 years ± 10]; center 2, 14 healthy volunteers [mean age, 38 years ± 13] and 27 patients with aortic or cardiac disease [mean age, 78 years ± 18]). Each participant underwent highly accelerated 4D flow MRI (k-t acceleration, acceleration factor of 5) of the thoracic aorta. For comparison, conventional 4D flow MRI (acceleration factor of 2) was acquired in the participants at center 1 (n = 27). Regional aortic peak systolic velocities and three-dimensional WSS were quantified. RESULTS: k-t–accelerated scan times (center 1, 2:03 minutes ± 0:29; center 2, 2:06 minutes ± 0:20) were significantly reduced compared with conventional 4D flow MRI (center 1, 12:38 minutes ± 2:25; P < .0001). Overall good agreement was found between the two techniques (absolute differences ≤15%), but proximal aortic WSS was significantly underestimated in patients by using k-t–accelerated 4D flow when compared with conventional 4D flow (P ≤ .03). k-t–accelerated 4D flow MRI was reproducible (intra- and interobserver intraclass correlation coefficient ≥0.98) and identified significantly increased peak velocities and WSS in patients with stenotic (P ≤ .003) or bicuspid (P ≤ .04) aortic valves compared with healthy volunteers. In addition, k-t–accelerated 4D flow MRI–derived velocities and WSS were inversely related to age (r ≥−0.53; P ≤ .03) over all healthy volunteers. CONCLUSION: k-t–accelerated aortic 4D flow MRI providing 2-minute scan times was feasible and reproducible at two centers. Although consistent healthy aging- and disease-related changes in aortic hemodynamics were observed, care should be taken when considering WSS, which can be underestimated in patients

    Necator americanus and Helminth Co-Infections: Further Down-Modulation of Hookworm-Specific Type 1 Immune Responses

    Get PDF
    Parasitic infections in humans are common in tropical regions and under bad housing and sanitation conditions multiple parasitic infections are the rule rather than the exception. For helminth infections, which are thought to affect almost a quarter of the world's population, most common combinations include soil-transmitted helminths, such as hookworm, roundworm, and whipworm, as well as extra-intestinal infections by schistosomes. In order to develop and test a hookworm vaccine in endemic areas, the understanding of the impact of multiple helminth infections (co-infection) on the immune response against hookworm in infected individuals is crucial. The authors report in their article, that several parameters of the cellular (T cell markers, cytokines, chemokines) and humoral immune response (e.g. IgG4 and IgE antibodies) against hookworm are significantly affected or modulated in individuals co-infected with hookworm, roundworm and/or schistosomes. These results imply that the immune response against components of a hookworm vaccine might be altered by previous contact with other helminth species in endemic areas

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation

    Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth

    Get PDF
    Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations

    Quantification of cAMP and cGMP analogs in intact cells: pitfalls in enzyme immunoassays for cyclic nucleotides

    Get PDF
    Immunoassays are routinely used as research tools to measure intracellular cAMP and cGMP concentrations. Ideally, this application requires antibodies with high sensitivity and specificity. The present work evaluates the cross-reactivity of commercially available cyclic nucleotide analogs with two non-radioactive and one radioactive cAMP and cGMP immunoassay. Most of the tested cyclic nucleotide analogs showed low degree competition with the antibodies; however, with Rp-cAMPS, 8-Br-cGMP and 8-pCPT-cGMP, a strong cross-reactivity with the corresponding cAMP and cGMP, respectively, immunoassays was observed. The determined EIA-binding constants enabled the measurement of the intracellular cyclic nucleotide concentrations and revealed a time- and lipophilicity-dependent cell membrane permeability of the compounds in the range of 10–30% of the extracellular applied concentration, thus allowing a more accurate prediction of the intracellular analog levels in a given experiment

    QGP Theory: Status and Perspectives

    Get PDF
    The current status of Quark-Gluon-Plasma Theory is reviewed. Special emphasis is placed on QGP signatures, the interpretation of current data and what to expect from RHIC in the near future.Comment: 20 pages, invited overview talk at the 4th International Conference on the Physcis and Astrophysics of the Quark-Gluon-Plasma, November 2001, Jaipur, India, to appear in Praman

    Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany

    Get PDF
    Background Despite strong recommendations for colorectal cancer (CRC) screening, participation rates are low. Understanding factors that affect screening choices is essential to developing future screening strategies. Therefore, this study assessed patient willingness to use non-invasive stool or blood based screening tests after refusing colonoscopy. Methods Participants were recruited during regular consultations. Demographic, health, psychological and socioeconomic factors were recorded. All subjects were advised to undergo screening by colonoscopy. Subjects who refused colonoscopy were offered a choice of non-invasive tests. Subjects who selected stool testing received a collection kit and instructions; subjects who selected plasma testing had a blood draw during the office visit. Stool samples were tested with the Hb/Hp Complex Elisa test, and blood samples were tested with the Epi proColon® 2.0 test. Patients who were positive for either were advised to have a diagnostic colonoscopy. Results 63 of 172 subjects were compliant to screening colonoscopy (37%). 106 of the 109 subjects who refused colonoscopy accepted an alternative non-invasive method (97%). 90 selected the Septin9 blood test (83%), 16 selected a stool test (15%) and 3 refused any test (3%). Reasons for blood test preference included convenience of an office draw, overall convenience and less time consuming procedure. Conclusions 97% of subjects refusing colonoscopy accepted a non-invasive screening test of which 83% chose the Septin9 blood test. The observation that participation can be increased by offering non-invasive tests, and that a blood test is the preferred option should be validated in a prospective trial in the screening setting

    Quantifying garnet-melt trace element partitioning using lattice-strain theory: New crystal-chemical and thermodynamic constraints

    Get PDF
    Many geochemical models of major igneous differentiation events on the Earth, the Moon, and Mars invoke the presence of garnet or its high-pressure majoritic equivalent as a residual phase, based on its ability to fractionate critical trace element pairs (Lu/Hf, U/Th, heavy REE/light REE). As a result, quantitative descriptions of mid-ocean ridge and hot spot magmatism, and lunar, martian, and terrestrial magma oceans require knowledge of garnet-melt partition coefficients over a wide range of conditions. In this contribution, we present new crystal-chemical and thermodynamic constraints on the partitioning of rare earth elements (REE), Y and Sc between garnet and anhydrous silicate melt as a function of pressure (P), temperature (T), and composition (X). Our approach is based on the interpretation of experimentally determined values of partition coefficients D using lattice-strain theory. In this and a companion paper (Draper and van Westrenen this issue) we derive new predictive equations for the ideal ionic radius of the dodecahedral garnet X-site,
    • …
    corecore