322 research outputs found

    The psychological salience of religiosity and spirituality among Christian young people in New Zealand: A mixed-methods study

    Get PDF
    This mixed-methods exploratory study examined the psychological salience of religiosity and spirituality in a sample of young people (ages 16–21, M age = 18.9 years; SD = 1.36) from New Zealand. Participants completed a cross-sectional online questionnaire with both qualitative and quantitative questions that assessed subjective perceptions of religion and spirituality and theoretically linked social and cognitive (motivation and identity) factors associated with the psychological salience of religiosity/spirituality. The results showed considerable overlap in participants’ conceptualization of religiosity and spirituality as the two constructs related to participants’ faith; yet, the sample had greater affinity for spirituality than religiosity. Relationship quality and religious/spiritual support from family and friends were associated with a stronger community connection. This was associated with participants’ spiritual identity and extrinsic motivation to be involved in religious activities, which in turn predicted greater religious/spiritual salience. The findings replicate previous research in the relationship between religiosity and spirituality in Christian samples, and also breaks new ground in the conceptualization of the psychological salience of religiosity/spirituality and in identifying community connection as a link to increased religious/spiritual identity and motivation among adolescents and young adults

    SnTox3 Acts in Effector Triggered Susceptibility to Induce Disease on Wheat Carrying the Snn3 Gene

    Get PDF
    The necrotrophic fungus Stagonospora nodorum produces multiple proteinaceous host-selective toxins (HSTs) which act in effector triggered susceptibility. Here, we report the molecular cloning and functional characterization of the SnTox3-encoding gene, designated SnTox3, as well as the initial characterization of the SnTox3 protein. SnTox3 is a 693 bp intron-free gene with little obvious homology to other known genes. The predicted immature SnTox3 protein is 25.8 kDa in size. A 20 amino acid signal sequence as well as a possible pro sequence are predicted. Six cysteine residues are predicted to form disulfide bonds and are shown to be important for SnTox3 activity. Using heterologous expression in Pichia pastoris and transformation into an avirulent S. nodorum isolate, we show that SnTox3 encodes the SnTox3 protein and that SnTox3 interacts with the wheat susceptibility gene Snn3. In addition, the avirulent S. nodorum isolate transformed with SnTox3 was virulent on host lines expressing the Snn3 gene. SnTox3-disrupted mutants were deficient in the production of SnTox3 and avirulent on the Snn3 differential wheat line BG220. An analysis of genetic diversity revealed that SnTox3 is present in 60.1% of a worldwide collection of 923 isolates and occurs as eleven nucleotide haplotypes resulting in four amino acid haplotypes. The cloning of SnTox3 provides a fundamental tool for the investigation of the S. nodorum–wheat interaction, as well as vital information for the general characterization of necrotroph–plant interactions

    The Cysteine Rich Necrotrophic Effector SnTox1 Produced by Stagonospora nodorum Triggers Susceptibility of Wheat Lines Harboring Snn1

    Get PDF
    The wheat pathogen Stagonospora nodorum produces multiple necrotrophic effectors (also called host-selective toxins) that promote disease by interacting with corresponding host sensitivity gene products. SnTox1 was the first necrotrophic effector identified in S. nodorum, and was shown to induce necrosis on wheat lines carrying Snn1. Here, we report the molecular cloning and validation of SnTox1 as well as the preliminary characterization of the mechanism underlying the SnTox1-Snn1 interaction which leads to susceptibility. SnTox1 was identified using bioinformatics tools and verified by heterologous expression in Pichia pastoris. SnTox1 encodes a 117 amino acid protein with the first 17 amino acids predicted as a signal peptide, and strikingly, the mature protein contains 16 cysteine residues, a common feature for some avirulence effectors. The transformation of SnTox1 into an avirulent S. nodorum isolate was sufficient to make the strain pathogenic. Additionally, the deletion of SnTox1 in virulent isolates rendered the SnTox1 mutated strains avirulent on the Snn1 differential wheat line. SnTox1 was present in 85% of a global collection of S. nodorum isolates. We identified a total of 11 protein isoforms and found evidence for strong diversifying selection operating on SnTox1. The SnTox1-Snn1 interaction results in an oxidative burst, DNA laddering, and pathogenesis related (PR) gene expression, all hallmarks of a defense response. In the absence of light, the development of SnTox1-induced necrosis and disease symptoms were completely blocked. By comparing the infection processes of a GFP-tagged avirulent isolate and the same isolate transformed with SnTox1, we conclude that SnTox1 may play a critical role during fungal penetration. This research further demonstrates that necrotrophic fungal pathogens utilize small effector proteins to exploit plant resistance pathways for their colonization, which provides important insights into the molecular basis of the wheat-S. nodorum interaction, an emerging model for necrotrophic pathosystems

    Extraction of cocoa proanthocyanidins and their fractionation by sequential centrifugal partition chromatography and gel permeation chromatography

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)Cocoa beans contain secondary metabolites ranging from simple alkaloids to complex polyphenols with most of them believed to possess significant health benefits. The increasing interest in these health effects has prompted the need to develop techniques for their extraction, fractionation, separation, and analysis. This work provides an update on analytical procedures with a focus on establishing a gentle extraction technique. Cocoa beans were finely ground to an average particle size of <100 μm, defatted at 20°C using n-hexane, and extracted three times with 50 % aqueous acetone at 50°C. Determination of the total phenolic content was done using the Folin-Ciocalteu assay, the concentration of individual polyphenols was analyzed by electrospray ionization high performance liquid chromatography-mass spectrometry (ESI-HPLC/MS). Fractions of bioactive compounds were separated by combining sequential centrifugal partition chromatography (SCPC) and gel permeation column chromatography using Sephadex LH-20. For SCPC, a two-phase solvent system consisting of ethyl acetate/n-butanol/water (4:1:5, v/v/v) was successfully applied for the separation of theobromine, caffeine, and representatives of the two main phenolic compound classes flavan-3-ols and flavonols. Gel permeation chromatography on Sephadex LH-20 using a stepwise elution sequence with aqueous acetone has been shown for effectively separating individual flavan-3-ols. Separation was obtained for (-)-epicatechin, proanthocyanidin dimer B2, trimer C1, and tetramer cinnamtannin A2. The purity of alkaloids and phenolic compounds was determined by HPLC analysis and their chemical identity was confirmed by mass spectrometry

    A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres

    Get PDF
    Background: Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the cause of one of barley’s most important diseases, net form of net blotch. Here we report the first genome assembly for this species based solely on short Solexa sequencing reads of isolate 0-1. The assembly was validated by comparison to BAC sequences, ESTs, orthologous genes and by PCR, and complemented by cytogenetic karyotyping and the first genome-wide genetic map for P. teres f. teres. Results: The total assembly was 41.95 Mbp and contains 11,799 gene models of 50 amino acids or more. Comparison against two sequenced BACs showed that complex regions with a high GC content assembled effectively. Electrophoretic karyotyping showed distinct chromosomal polymorphisms between isolates 0-1 and 15A, and cytological karyotyping confirmed the presence of at least nine chromosomes. The genetic map spans 2477.7 cM and is composed of 243 markers in 25 linkage groups, and incorporates SSR markers developed from the assembly. Among predicted genes, non-ribosomal peptide synthetases and efflux pumps in particular appear to have undergone a P. teres f. teres-specific expansion of non-orthologous gene families. Conclusions: This study demonstrates that paired-end Solexa sequencing can successfully capture coding regions of a filamentous fungal genome. The assembly contains a plethora of predicted genes that have been implicated in a necrotrophic lifestyle and pathogenicity and presents a significant resource for examining the bases for P. teres f. teres pathogenicity

    Aflatoxin-Induced TP53 R249S Mutation in HepatoCellular Carcinoma in Thailand: Association with Tumors Developing in the Absence of Liver Cirrhosis

    Get PDF
    Primary Liver Cancer (PLC) is the leading cause of death by cancer among males in Thailand and the 3rd among females. Most cases are hepatocellular carcinoma (HCC) but cholangiocarcinomas represent between 4 and 80% of liver cancers depending upon geographic area. Most HCC are associated with chronic infection by Hepatitis B Virus while a G→T mutation at codon 249 of the TP53 gene, R249S, specific for exposure to aflatoxin, is detected in tumors for up to 30% of cases. We have used Short Oligonucleotide Mass Analysis (SOMA) to quantify free circulating R249S-mutated DNA in plasma using blood specimens collected in a hospital case:control study. Plasma R249S-mutated DNA was detectable at low concentrations (≥67 copies/mL) in 53 to 64% of patients with primary liver cancer or chronic liver disease and in 19% of controls. 44% of patients with HCC and no evidence of cirrhosis had plasma concentrations of R249S-mutated DNA ≥150 copies/mL, compared to 21% in patients with both HCC and cirrhosis, 22% in patients with cholangiocarcinoma, 12% in patients with non-cancer chronic liver disease and 3% of subjects in the reference group. Thus, plasma concentrations of R249S-mutated DNA ≥150 copies/mL tended to be more common in patients with HCC developing without pre-existing cirrhosis (p = 0.027). Overall, these results support the preferential occurrence of R249S-mutated DNA in HCC developing in the absence of cirrhosis in a context of HBV chronic infection

    Regulation of proteinaceous effector expression in phytopathogenic fungi

    Get PDF
    Effectors are molecules used by microbial pathogens to facilitate infection via effector-triggered susceptibility or tissue necrosis in their host. Much research has been focussed on the identification and elucidating the function of fungal effectors during plant pathogenesis. By comparison, knowledge of how phytopathogenic fungi regulate the expression of effector genes has been lagging. Several recent studies have illustrated the role of various transcription factors, chromosome-based control, effector epistasis, and mobilisation of endosomes within the fungal hyphae in regulating effector expression and virulence on the host plant. Improved knowledge of effector regulation is likely to assist in improving novel crop protection strategies

    The association of breast mitogens with mammographic densities

    Get PDF
    Radiologically dense breast tissue (mammographic density) is strongly associated with risk of breast cancer, but the biological basis for this association is unknown. In this study we have examined the association of circulating levels of hormones and growth factors with mammographic density. A total of 382 subjects, 193 premenopausal and 189 postmenopausal, without previous breast cancer or current hormone use, were selected in each of five categories of breast density from mammography units. Risk factor information, anthropometric measures, and blood samples were obtained, and oestradiol, progesterone, sex hormone binding globulin, growth hormone, insulin-like growth factor-I and its principal binding protein, and prolactin measured. Mammograms were digitised and measured using a computer-assisted method. After adjustment for other risk factors, we found in premenopausal women that serum insulin-like growth factor-I levels, and in postmenopausal women, serum levels of prolactin, were both significantly and positively associated with per cent density. Total oestradiol and progesterone levels were unrelated to per cent density in both groups. In postmenopausal women, free oestradiol (negatively), and sex hormone binding globulin (positively), were significantly related to per cent density. These data show an association between blood levels of breast mitogens and mammographic density, and suggest a biological basis for the associated risk of breast cancer
    corecore