1,234 research outputs found

    Interactive effects of elevated CO <inf>2</inf> and drought on nocturnal water fluxes in Eucalyptus saligna

    Full text link
    Nocturnal water flux has been observed in trees under a variety of environmental conditions and can be a significant contributor to diel canopy water flux. Elevated atmospheric CO 2 (elevated [CO 2]) can have an important effect on day-time plant water fluxes, but it is not known whether it also affects nocturnal water fluxes. We examined the effects of elevated [CO 2] on nocturnal water flux of field-grown Eucalyptus saligna trees using sap flux through the tree stem expressed on a sapwood area (J s) and leaf area (E t) basis. After 19 months growth under well-watered conditions, drought was imposed by withholding water for 5 months in the summer, ending with a rain event that restored soil moisture. Reductions in J s and E t were observed during the severe drought period in the dry treatment under elevated [CO 2], but not during moderate- and post-drought periods. Elevated [CO 2] affected night-time sap flux density which included the stem recharge period, called 'total night flux' (19:00 to 05:00, J s,r), but not during the post-recharge period, which primarily consisted of canopy transpiration (23:00 to 05:00, J s,c). Elevated [CO 2] wet (EW) trees exhibited higher J s,r than ambient [CO 2] wet trees (AW) indicating greater water flux in elevated [CO 2] under well-watered conditions. However, under drought conditions, elevated [CO 2] dry (ED) trees exhibited significantly lower J s,r than ambient [CO 2] dry trees (AD), indicating less water flux during stem recharge under elevated [CO 2]. J s,c did not differ between ambient and elevated [CO 2]. Vapour pressure deficit (D) was clearly the major influence on night-time sap flux. D was positively correlated with J s,r and had its greatest impact on J s,r at high D in ambient [CO 2]. Our results suggest that elevated [CO 2] may reduce night-time water flux in E. saligna when soil water content is low and D is high. While elevated [CO 2] affected J s,r, it did not affect day-time water flux in wet soil, suggesting that the responses of J s,r to environmental factors cannot be directly inferred from day-time patterns. Changes in J s,r are likely to influence pre-dawn leaf water potential, and plant responses to water stress. Nocturnal fluxes are clearly important for predicting effects of climate change on forest physiology and hydrology. Β© 2011 The Author. Published by Oxford University Press. A ll rights reserved

    Evidence of a metabolic memory to early-life dietary restriction in male C57BL/6 mice

    Get PDF
    &lt;p&gt;Background: Dietary restriction (DR) extends lifespan and induces beneficial metabolic effects in many animals. What is far less clear is whether animals retain a metabolic memory to previous DR exposure, that is, can early-life DR preserve beneficial metabolic effects later in life even after the resumption of ad libitum (AL) feeding. We examined a range of metabolic parameters (body mass, body composition (lean and fat mass), glucose tolerance, fed blood glucose, fasting plasma insulin and insulin-like growth factor 1 (IGF-1), insulin sensitivity) in male C57BL/6 mice dietary switched from DR to AL (DR-AL) at 11 months of age (mid life). The converse switch (AL-DR) was also undertaken at this time. We then compared metabolic parameters of the switched mice to one another and to age-matched mice maintained exclusively on an AL or DR diet from early life (3 months of age) at 1 month, 6 months or 10 months post switch.&lt;/p&gt; &lt;p&gt;Results: Male mice dietary switched from AL-DR in mid life adopted the metabolic phenotype of mice exposed to DR from early life, so by the 10-month timepoint the AL-DR mice overlapped significantly with the DR mice in terms of their metabolic phenotype. Those animals switched from DR-AL in mid life showed clear evidence of a glycemic memory, with significantly improved glucose tolerance relative to mice maintained exclusively on AL feeding from early life. This difference in glucose tolerance was still apparent 10 months after the dietary switch, despite body mass, fasting insulin levels and insulin sensitivity all being similar to AL mice at this time.&lt;/p&gt; &lt;p&gt;Conclusions: Male C57BL/6 mice retain a long-term glycemic memory of early-life DR, in that glucose tolerance is enhanced in mice switched from DR-AL in mid life, relative to AL mice, even 10 months following the dietary switch. These data therefore indicate that the phenotypic benefits of DR are not completely dissipated following a return to AL feeding. The challenge now is to understand the molecular mechanisms underlying these effects, the time course of these effects and whether similar interventions can confer comparable benefits in humans.&lt;/p&gt

    Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea

    Get PDF
    Although reduced blood lactate concentrations ([lacβˆ’]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lacβˆ’]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (VΛ™Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% VΛ™Emax

    From theory to 'measurement' in complex interventions: methodological lessons from the development of an e-health normalisation instrument

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; Although empirical and theoretical understanding of processes of implementation in health care is advancing, translation of theory into structured measures that capture the complex interplay between interventions, individuals and context remain limited. This paper aimed to (1) describe the process and outcome of a project to develop a theory-based instrument for measuring implementation processes relating to e-health interventions; and (2) identify key issues and methodological challenges for advancing work in this field.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods&lt;/b&gt; A 30-item instrument (Technology Adoption Readiness Scale (TARS)) for measuring normalisation processes in the context of e-health service interventions was developed on the basis on Normalization Process Theory (NPT). NPT focuses on how new practices become routinely embedded within social contexts. The instrument was pre-tested in two health care settings in which e-health (electronic facilitation of healthcare decision-making and practice) was used by health care professionals.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt; The developed instrument was pre-tested in two professional samples (N = 46; N = 231). Ratings of items representing normalisation 'processes' were significantly related to staff members' perceptions of whether or not e-health had become 'routine'. Key methodological challenges are discussed in relation to: translating multi-component theoretical constructs into simple questions; developing and choosing appropriate outcome measures; conducting multiple-stakeholder assessments; instrument and question framing; and more general issues for instrument development in practice contexts.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; To develop theory-derived measures of implementation process for progressing research in this field, four key recommendations are made relating to (1) greater attention to underlying theoretical assumptions and extent of translation work required; (2) the need for appropriate but flexible approaches to outcomes measurement; (3) representation of multiple perspectives and collaborative nature of work; and (4) emphasis on generic measurement approaches that can be flexibly tailored to particular contexts of study

    Night-time measurements of HOx during the RONOCO project and analysis of the sources of HO2

    Get PDF
    Measurements of the radical species OH and HO2 were made using the fluorescence assay by gas expansion (FAGE) technique during a series of night-time and daytime flights over the UK in summer 2010 and winter 2011. OH was not detected above the instrument's 1Οƒ limit of detection during any of the night-time flights or during the winter daytime flights, placing upper limits on [OH] of 1.8 Γ— 106 molecule cmβˆ’3 and 6.4 Γ— 105 molecule cmβˆ’3 for the summer and winter flights, respectively. HO2 reached a maximum concentration of 3.2 Γ— 108 molecule cmβˆ’3 (13.6 pptv) during a night-time flight on 20 July 2010, when the highest concentrations of NO3 and O3 were also recorded. An analysis of the rates of reaction of OH, O3, and the NO3 radical with measured alkenes indicates that the summer night-time troposphere can be as important for the processing of volatile organic compounds (VOCs) as the winter daytime troposphere. An analysis of the instantaneous rate of production of HO2 from the reactions of O3 and NO3 with alkenes has shown that, on average, reactions of NO3 dominated the night-time production of HO2 during summer and reactions of O3 dominated the night-time HO2 production during winter

    Expression of miRNAs miR-133b and miR-206 in the Il17a/f Locus Is Co-Regulated with IL-17 Production in alpha beta and gamma delta T Cells

    Get PDF
    Differentiation of T helper 17 cells (Th17) is a multistep process that involves the cytokines IL-6, TGF-beta, and IL-23 as well as IL-1 beta, IL-21, and TNF-alpha. Thereby, robust induction of the capacity to produce IL-17 involves epigenetic modifications of the syntenic Il17a/f locus. Using inbred mouse strains, we identified co-regulation of gene transcription at the Il17a/f locus with the nearby microRNAs miR-133b and miR-206 that are clustered approximately 45 kb upstream of Il17a/f. Expression of these microRNAs was specific for Th17 as compared to other CD4(+) T cell subsets and this was equally valid for in vitro polarized and ex vivo derived cells. From all factors analyzed, IL-23 was the most important cytokine for the in vitro induction of miR-133b and miR-206 in naive CD4(+) T cells of wild type mice. However, analysis of IL-23R deficient mice revealed that IL-23R signaling was not essential for the induction of miR-133b and miR-206. Importantly, we found a similar co-regulation in CCR6(+) and other gamma delta T cell subsets that are predisposed to production of IL-17. Taken together, we discovered a novel feature of T cell differentiation towards an IL-17-producing phenotype that is shared between alpha beta and gamma delta T cells. Notably, the specific co-regulation of miR-133b and miR-206 with the Il17a/f locus also extended to human Th17 cells. This qualifies expression of miR-133b and miR-206 in T cells as novel biomarkers for Th17-type immune reactions

    The Cyclophilin-Binding Agent Sanglifehrin A Is a Dendritic Cell Chemokine and Migration Inhibitor

    Get PDF
    Sanglifehrin A (SFA) is a cyclophilin-binding immunosuppressant but the immunobiology of action is poorly understood. We and others have reported that SFA inhibits IL-12 production and antigen uptake in dendritic cells (DC) and exhibits lower activity against lymphocytes. Here we show that SFA suppresses DC chemokine production and migration. Gene expression analysis and subsequent protein level confirmation revealed that SFA suppressed CCL5, CCL17, CCL19, CXCL9 and CXCL10 expression in human monocyte-derived DC (moDC). A systems biology analysis, Onto Express, confirmed that SFA interferes with chemokine-chemokine receptor gene expression with the highest impact. Direct comparison with the related agent cyclosporine A (CsA) and dexamethasone indicated that SFA uniquely suppresses moDC chemokine expression. Competitive experiments with a 100-fold molar excess of CsA and with N-Methyl-Val-4-cyclosporin, representing a nonimmunosuppressive derivative of CsA indicated chemokine suppression through a cyclophilin-A independent pathway. Functional assays confirmed reduced migration of CD4+ Tcells and moDCs to supernatant of SFA-exposed moDCs. Vice versa, SFA-exposed moDC exhibited reduced migration against CCL19. Moreover, SFA suppressed expression of the ectoenzyme CD38 that was reported to regulate DC migration and cytokine production. These results identify SFA as a DC chemokine and migration inhibitor and provide novel insight into the immunobiology of SFA

    Perturbing Dynamin Reveals Potent Effects on the Drosophila Circadian Clock

    Get PDF
    BACKGROUND: Transcriptional feedback loops are central to circadian clock function. However, the role of neural activity and membrane events in molecular rhythms in the fruit fly Drosophila is unclear. To address this question, we expressed a temperature-sensitive, dominant negative allele of the fly homolog of dynamin called shibire(ts1) (shi(ts1)), an active component in membrane vesicle scission. PRINCIPAL FINDINGS: Broad expression in clock cells resulted in unexpectedly long, robust periods (>28 hours) comparable to perturbation of core clock components, suggesting an unappreciated role of membrane dynamics in setting period. Expression in the pacemaker lateral ventral neurons (LNv) was necessary and sufficient for this effect. Manipulation of other endocytic components exacerbated shi(ts1)'s behavioral effects, suggesting its mechanism is specific to endocytic regulation. PKA overexpression rescued period effects suggesting shi(ts1) may downregulate PKA pathways. Levels of the clock component PERIOD were reduced in the shi(ts1)-expressing pacemaker small LNv of flies held at a fully restrictive temperature (29 degrees C). Less restrictive conditions (25 degrees C) delayed cycling proportional to observed behavioral changes. Levels of the neuropeptide PIGMENT-DISPERSING FACTOR (PDF), the only known LNv neurotransmitter, were also reduced, but PERIOD cycling was still delayed in flies lacking PDF, implicating a PDF-independent process. Further, shi(ts1) expression in the eye also results in reduced PER protein and per and vri transcript levels, suggesting that shibire-dependent signaling extends to peripheral clocks. The level of nuclear CLK, transcriptional activator of many core clock genes, is also reduced in shi(ts1) flies, and Clk overexpression suppresses the period-altering effects of shi(ts1). CONCLUSIONS: We propose that membrane protein turnover through endocytic regulation of PKA pathways modulates the core clock by altering CLK levels and/or activity. These results suggest an important role for membrane scission in setting circadian period
    • …
    corecore