132 research outputs found

    Cellular expression, trafficking, and function of two isoforms of human ULBP5/RAET1G

    Get PDF
    Background: The activating immunoreceptor NKG2D is expressed on Natural Killer (NK) cells and subsets of T cells. NKG2D contributes to anti-tumour and anti-viral immune responses in vitro and in vivo. The ligands for NKG2D in humans are diverse proteins of the MIC and ULBP/RAET families that are upregulated on the surface of virally infected cells and tumours. Two splicing variants of ULBP5/RAET1G have been cloned previously, but not extensively characterised. Methodology/Principal Findings: We pursue a number of approaches to characterise the expression, trafficking, and function of the two isoforms of ULBP5/RAET1G. We show that both transcripts are frequently expressed in cell lines derived from epithelial cancers, and in primary breast cancers. The full-length transcript, RAET1G1, is predicted to encode a molecule with transmembrane and cytoplasmic domains that are unique amongst NKG2D ligands. Using specific anti-RAET1G1 antiserum to stain tissue microarrays we show that RAET1G1 expression is highly restricted in normal tissues. RAET1G1 was expressed at a low level in normal gastrointestinal epithelial cells in a similar pattern to MICA. Both RAET1G1 and MICA showed increased expression in the gut of patients with celiac disease. In contrast to healthy tissues the RAET1G1 antiserum stained a wide variety or different primary tumour sections. Both endogenously expressed and transfected RAET1G1 was mainly found inside the cell, with a minority of the protein reaching the cell surface. Conversely the truncated splicing variant of RAET1G2 was shown to encode a soluble molecule that could be secreted from cells. Secreted RAET1G2 was shown to downregulate NKG2D receptor expression on NK cells and hence may represent a novel tumour immune evasion strategy. Conclusions/Significance: We demonstrate that the expression patterns of ULBP5RAET1G are very similar to the well-characterised NKG2D ligand, MICA. However the two isoforms of ULBP5/RAET1G have very different cellular localisations that are likely to reflect unique functionality

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    Renal Transplant Immunosuppression Impairs Natural Killer Cell Function In Vitro and In Vivo

    Get PDF
    Background: Despite an increasing awareness of the importance of innate immunity, the roles of natural killer (NK) cells in transplant rejection and antiviral and cancer immunity during immunosuppression have not been clearly defined. Methods: To address this issue we have developed a quantitative assay of NK cell function that can be used on clinical samples and have studied the influence of immunosuppression on NK cell function. NK cell degranulation and intracellular interferon (IFN)-c production were determined by flow cytometry of peripheral blood samples. Results: Overnight ex vivo treatment of peripheral blood cells from healthy controls with ciclosporin or tacrolimus inhibited NK cell degranulation and IFN-c production in a dose-dependent manner. A similar impairment of function was seen in NK cells from patients treated in vivo with calcineurin inhibitors. In the early post-transplant period, there was a variable reduction of NK cell counts after treatment with alemtuzumab and basiliximab. Conclusions: The functional inhibition of NK cells in early transplant patients coincides with the period of maximum susceptibility to viral infections. The ability to assay NK cell function in clinical samples allows assessment of the impact of immunosuppressio

    In Vivo Expression Pattern of MICA and MICB and Its Relevance to Auto-Immunity and Cancer

    Get PDF
    Non-conventional MHC class I MIC molecules interact not with the TCR, but with NKG2D, a C-type lectin activatory receptor present on most NK, γδ and CD8+ αβ T cells. While this interaction is critical in triggering/calibrating the cytotoxic activity of these cells, the actual extent of its in vivo involvement, in man, in infection, cancer or autoimmunity, needs further assessment. The latter has gained momentum along with the reported expansion of peripheral CD4+CD28−NKG2D+ T cells in rheumatoid arthritis (RA). We first initiated to extend this report to a larger cohort of not only RA patients, but also those affected by systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS). In RA and SS, this initial observation was further tested in target tissues: the joint and the salivary glands, respectively. In conclusion and despite occasional and indiscriminate expansion of the previously incriminated T cell subpopulation, no correlation could be observed between the CD4+CD28−NKG2D+ and auto-immunity. Moreover, in situ, the presence of NKG2D matched that of CD8+, but not that of CD4+ T cells. In parallel, a total body tissue scan of both MICA and MICB transcription clearly shows that despite original presumptions, and with the exception of the central nervous system, both genes are widely transcribed and therefore possibly translated and membrane-bound. Extending this analysis to a number of human tumors did not reveal a coherent pattern of expression vs. normal tissues. Collectively these data question previous assumptions, correlating a tissue-specific expression/induction of MIC in relevance to auto-immune or tumor processes
    corecore