2,214 research outputs found
Incorporating ‘recruitment’ in matrix projection models : estimation, parameters, and the influence of model structure
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Ornithology 152, Suppl.2 (2012):585-595, doi:10.1007/s10336-010-0573-1.Advances in the estimation of population parameters
using encounter data from marked individuals have
made it possible to include estimates of the probability of
recruitment in population projection models. However, the
projected growth rate of the population, and the sensitivity
of projected growth to changes in recruitment, can vary
significantly depending upon both the structural form of the
model and how recruitment is parameterized. We show that
the common practices of (1) collapsing some age classes
into a single, terminal ‘aggregated’ age-class, and (2) parameterizing
recruitment using the proportion of recruited
individuals (breeders) in a given age-class may confound
analysis of age-based (Leslie) matrix projection models in
some instances, relative to state-based projection models
where recruited and pre-recruited individuals are treated as
separate states. Failing to account for these differences can
lead to misinterpretation of the relative role of recruitment in
the dynamics of an age-structured population.We show that
such problems can be avoided, either by structural changes
to the terminal aggregated age-class in age-based models,
or by using using a state-based model instead. Since all
the metrics of general interest from a classical age-based
matrix models are readily derived from a state-based model
equivalent, this suggests there may be little reason to use the
classical age-based approach in situations where recruitment
is a parameter of interest
Caring for the patient, caring for the record: an ethnographic study of 'back office' work in upholding quality of care in general practice
© 2015 Swinglehurst and Greenhalgh; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Additional file 1: Box 1. Field notes on summarising (Clover Surgery). Box 2. Extract of document prepared for GPs by summarisers at Clover
Surgery. Box 3. Fieldnotes on coding incoming post, Clover (original notes edited for brevity).This work was funded by a research grant from the UK Medical Research Council (Healthcare Electronic Records in Organisations 07/133) and a
National Institute of Health Research doctoral fellowship award for DS (RDA/03/07/076). The funders were not involved in the selection or analysis of data nor did they make any contribution to the content of the final
manuscript
Opening the black box of under-health people: the case of Spain
ABSTRACT: The most famous modern definition of health was created during a Preamble to the Constitution of the World Health Organization in 1946: "Health is a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity." This definition has not been amended and, since then, many indicators have been proposed to measure health such as Self-Assessed Health (SAH) status. It provides an overall measure of a population's health based on individuals' personal perceptions of their own health. In this paper, we focus our analysis on "under-health" as the fact of having a level that falls behind the health requirements necessary to perform what is considered an "expected life based on Self Assessed Health". For Spain using the European Union Statistics on Income and Living Conditions (EU-SILC), we can confirm there exist under-healthy people by occupation, age group and sex. Additionally, under-healthy workers are most likely to be found among skilled agricultural, fishery workers and elementary occupations
Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin
One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
Empirical Bayes analysis of single nucleotide polymorphisms
<p>Abstract</p> <p>Background</p> <p>An important goal of whole-genome studies concerned with single nucleotide polymorphisms (SNPs) is the identification of SNPs associated with a covariate of interest such as the case-control status or the type of cancer. Since these studies often comprise the genotypes of hundreds of thousands of SNPs, methods are required that can cope with the corresponding multiple testing problem. For the analysis of gene expression data, approaches such as the empirical Bayes analysis of microarrays have been developed particularly for the detection of genes associated with the response. However, the empirical Bayes analysis of microarrays has only been suggested for binary responses when considering expression values, i.e. continuous predictors.</p> <p>Results</p> <p>In this paper, we propose a modification of this empirical Bayes analysis that can be used to analyze high-dimensional categorical SNP data. This approach along with a generalized version of the original empirical Bayes method are available in the R package siggenes version 1.10.0 and later that can be downloaded from <url>http://www.bioconductor.org</url>.</p> <p>Conclusion</p> <p>As applications to two subsets of the HapMap data show, the empirical Bayes analysis of microarrays cannot only be used to analyze continuous gene expression data, but also be applied to categorical SNP data, where the response is not restricted to be binary. In association studies in which typically several ten to a few hundred SNPs are considered, our approach can furthermore be employed to test interactions of SNPs. Moreover, the posterior probabilities resulting from the empirical Bayes analysis of (prespecified) interactions/genotypes can also be used to quantify the importance of these interactions.</p
Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks
Acute treatment with subanesthetic ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, is widely utilized as a translational model for schizophrenia. However, how acute NMDA receptor blockade impacts on brain functioning at a systems level, to elicit translationally relevant symptomatology and behavioral deficits, has not yet been determined. Here, for the first time, we apply established and recently validated topological measures from network science to brain imaging data gained from ketamine-treated mice to elucidate how acute NMDA receptor blockade impacts on the properties of functional brain networks. We show that the effects of acute ketamine treatment on the global properties of these networks are divergent from those widely reported in schizophrenia. Where acute NMDA receptor blockade promotes hyperconnectivity in functional brain networks, pronounced dysconnectivity is found in schizophrenia. We also show that acute ketamine treatment increases the connectivity and importance of prefrontal and thalamic brain regions in brain networks, a finding also divergent to alterations seen in schizophrenia. In addition, we characterize how ketamine impacts on bipartite functional interactions between neural subsystems. A key feature includes the enhancement of prefrontal cortex (PFC)-neuromodulatory subsystem connectivity in ketamine-treated animals, a finding consistent with the known effects of ketamine on PFC neurotransmitter levels. Overall, our data suggest that, at a systems level, acute ketamine-induced alterations in brain network connectivity do not parallel those seen in chronic schizophrenia. Hence, the mechanisms through which acute ketamine treatment induces translationally relevant symptomatology may differ from those in chronic schizophrenia. Future effort should therefore be dedicated to resolve the conflicting observations between this putative translational model and schizophrenia
Evaluating heterogeneity in cumulative meta-analyses
BACKGROUND: Recently developed measures such as I(2 )and H allow the evaluation of the impact of heterogeneity in conventional meta-analyses. There has been no examination of the development of heterogeneity in the context of a cumulative meta-analysis. METHODS: Cumulative meta-analyses of five smoking cessation interventions (clonidine, nicotine replacement therapy using gum and patch, physician advice and acupuncture) were used to calculate I(2 )and H. These values were plotted by year of publication, control event rate and sample size to trace the development of heterogeneity over these covariates. RESULTS: The cumulative evaluation of heterogeneity varied according to the measure of heterogeneity used and the basis of cumulation. Plots produced from the calculations revealed areas of heterogeneity useful in the consideration of potential sources for further study. CONCLUSION: The examination of heterogeneity in conjunction with summary effect estimates in a cumulative meta-analysis offered valuable insight into the evolution of variation. Such information is not available in the context of conventional meta-analysis and has the potential to lead to the development of a richer picture of the effectiveness of interventions
Evaluation of Two Methods to Estimate and Monitor Bird Populations
Background: Effective management depends upon accurately estimating trends in abundance of bird populations over time, and in some cases estimating abundance. Two population estimation methods, double observer (DO) and double sampling (DS), have been advocated for avian population studies and the relative merits and short-comings of these methods remain an area of debate. Methodology/Principal Findings: We used simulations to evaluate the performances of these two population estimation methods under a range of realistic scenarios. For three hypothetical populations with different levels of clustering, we generated DO and DS population size estimates for a range of detection probabilities and survey proportions. Population estimates for both methods were centered on the true population size for all levels of population clustering and survey proportions when detection probabilities were greater than 20%. The DO method underestimated the population at detection probabilities less than 30 % whereas the DS method remained essentially unbiased. The coverage probability of 95 % confidence intervals for population estimates was slightly less than the nominal level for the DS method but was substantially below the nominal level for the DO method at high detection probabilities. Differences in observer detection probabilities did not affect the accuracy and precision of population estimates of the DO method. Population estimates for the DS method remained unbiased as the proportion of units intensively surveyed changed, but the variance of th
The Impact of Imputation on Meta-Analysis of Genome-Wide Association Studies
Genotype imputation is often used in the meta-analysis of genome-wide association studies (GWAS), for combining data from different studies and/or genotyping platforms, in order to improve the ability for detecting disease variants with small to moderate effects. However, how genotype imputation affects the performance of the meta-analysis of GWAS is largely unknown. In this study, we investigated the effects of genotype imputation on the performance of meta-analysis through simulations based on empirical data from the Framingham Heart Study. We found that when fix-effects models were used, considerable between-study heterogeneity was detected when causal variants were typed in only some but not all individual studies, resulting in up to ∼25% reduction of detection power. For certain situations, the power of the meta-analysis can be even less than that of individual studies. Additional analyses showed that the detection power was slightly improved when between-study heterogeneity was partially controlled through the random-effects model, relative to that of the fixed-effects model. Our study may aid in the planning, data analysis, and interpretation of GWAS meta-analysis results when genotype imputation is necessary
Novel Use of Matched Filtering for Synaptic Event Detection and Extraction
Efficient and dependable methods for detection and measurement of synaptic events are important for studies of synaptic physiology and neuronal circuit connectivity. As the published methods with detection algorithms based upon amplitude thresholding and fixed or scaled template comparisons are of limited utility for detection of signals with variable amplitudes and superimposed events that have complex waveforms, previous techniques are not applicable for detection of evoked synaptic events in photostimulation and other similar experimental situations. Here we report on a novel technique that combines the design of a bank of approximate matched filters with the detection and estimation theory to automatically detect and extract photostimluation-evoked excitatory postsynaptic currents (EPSCs) from individually recorded neurons in cortical circuit mapping experiments. The sensitivity and specificity of the method were evaluated on both simulated and experimental data, with its performance comparable to that of visual event detection performed by human operators. This new technique was applied to quantify and compare the EPSCs obtained from excitatory pyramidal cells and fast-spiking interneurons. In addition, our technique has been further applied to the detection and analysis of inhibitory postsynaptic current (IPSC) responses. Given the general purpose of our matched filtering and signal recognition algorithms, we expect that our technique can be appropriately modified and applied to detect and extract other types of electrophysiological and optical imaging signals
- …