240 research outputs found
Multi-level evidence of an allelic hierarchy of USH2A variants in hearing, auditory processing and speech/language outcomes.
Language development builds upon a complex network of interacting subservient systems. It therefore follows that variations in, and subclinical disruptions of, these systems may have secondary effects on emergent language. In this paper, we consider the relationship between genetic variants, hearing, auditory processing and language development. We employ whole genome sequencing in a discovery family to target association and gene x environment interaction analyses in two large population cohorts; the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK10K. These investigations indicate that USH2A variants are associated with altered low-frequency sound perception which, in turn, increases the risk of developmental language disorder. We further show that Ush2a heterozygote mice have low-level hearing impairments, persistent higher-order acoustic processing deficits and altered vocalizations. These findings provide new insights into the complexity of genetic mechanisms serving language development and disorders and the relationships between developmental auditory and neural systems
Impact of Migration and Acculturation on Prevalence of Type 2 Diabetes and Related Eye Complications in Indians Living in a Newly Urbanised Society
Background: Health of migrants is a major public health challenge faced by governments and policy makers. Asian Indians are among the fastest growing migration groups across Asia and the world, but the impact of migration and acculturation on diabetes and diabetes-related eye complications among Indians living in urban Asia remains unclear. Methodologies/Principal Findings: We evaluated the influence of migration and acculturation (i.e., migration status and length of residence) on the prevalence of type-2 diabetes mellitus (T2DM) and diabetes-related eye complications (diabetic retinopathy (DR) and cataract), among first-generation (defined as participant born in India with both parents born in India, n = 781) and second-generation (participants born in Singapore with both parents born in India, n = 1,112) Indian immigrants from a population-based study of Adult Indians in Singapore. Diabetes was defined as HbA1c≥6.5%, use of diabetic medication or a physician diagnosis of diabetes. Retinal and lens photographs were graded for the presence of DR and cataract. Compared to first generation immigrants, second generation immigrants had a higher age- and gender-standardized prevalence of T2DM (34.4% versus 29.0%, p<0.001), and, in those with T2DM, higher age- and gender-standardized prevalence of DR (31.7% versus 24.8%, p<0.001), nuclear cataract (13.6% versus 11.6%, p<0.001), and posterior sub-capsular cataract (6.4% versus 4.6%, p<0.001). Among first generation migrants, longer length of residence was associated with significantly younger age of diagnosis of diabetes and greater likelihood of having T2DM and diabetes-related eye complications. Conclusion: Second generation immigrant Indians and longer length of residence are associated with higher prevalence of diabetes and diabetes-related complications (i.e., DR and cataract) among migrant Indians living in Singapore. These data highlight potential worldwide impacts of migration patterns on the risk and burden of diabetes
Transferability of Type 2 Diabetes Implicated Loci in Multi-Ethnic Cohorts from Southeast Asia
Recent large genome-wide association studies (GWAS) have identified multiple loci
which harbor genetic variants associated with type 2 diabetes mellitus (T2D),
many of which encode proteins not previously suspected to be involved in the
pathogenesis of T2D. Most GWAS for T2D have focused on populations of European
descent, and GWAS conducted in other populations with different ancestry offer a
unique opportunity to study the genetic architecture of T2D. We performed
genome-wide association scans for T2D in 3,955 Chinese (2,010 cases, 1,945
controls), 2,034 Malays (794 cases, 1,240 controls), and 2,146 Asian Indians
(977 cases, 1,169 controls). In addition to the search for novel variants
implicated in T2D, these multi-ethnic cohorts serve to assess the
transferability and relevance of the previous findings from European descent
populations in the three major ethnic populations of Asia, comprising half of
the world's population. Of the SNPs associated with T2D in previous GWAS,
only variants at CDKAL1 and
HHEX/IDE/KIF11 showed the strongest
association with T2D in the meta-analysis including all three ethnic groups.
However, consistent direction of effect was observed for many of the other SNPs
in our study and in those carried out in European populations. Close examination
of the associations at both the CDKAL1 and
HHEX/IDE/KIF11 loci provided some evidence of locus and
allelic heterogeneity in relation to the associations with T2D. We also detected
variation in linkage disequilibrium between populations for most of these loci
that have been previously identified. These factors, combined with limited
statistical power, may contribute to the failure to detect associations across
populations of diverse ethnicity. These findings highlight the value of
surveying across diverse racial/ethnic groups towards the fine-mapping efforts
for the casual variants and also of the search for variants, which may be
population-specific
Ethnic differences in the association between blood pressure components and chronic kidney disease in middle aged and older Asian adults
10.1186/1471-2369-14-86BMC Nephrology141
Comprehensive Genotyping in Two Homogeneous Graves' Disease Samples Reveals Major and Novel HLA Association Alleles
BACKGROUND: Graves' disease (GD) is the leading cause of hyperthyroidism and thyroid eye disease inherited as a complex trait. Although geoepidemiology studies showed relatively higher prevalence of GD in Asians than in Caucasians, previous genetic studies were contradictory concerning whether and/or which human leukocyte antigen (HLA) alleles are associated with GD in Asians. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a case-control association study (499 unrelated GD cases and 504 controls) and a replication in an independent family sample (419 GD individuals and their 282 relatives in 165 families). To minimize genetic and phenotypic heterogeneity, we included only ethnic Chinese Han population in Taiwan and excluded subjects with hypothyroidism. We performed direct and comprehensive genotyping of six classical HLA loci (HLA-A, -B, -C, -DPB1, -DQB1 and -DRB1) to 4-digit resolution. Combining the data of two sample populations, we found that B*46:01 (odds ratio under dominant model [OR] = 1.33, Bonferroni corrected combined P [P(Bc)] = 1.17 x 10⁻²), DPB1*05:01 (OR = 2.34, P(Bc) = 2.58 x 10⁻¹⁰), DQB1*03:02 (OR = 0.62, P(Bc) = 1.97 x 10⁻²), DRB1*15:01 (OR = 1.68, P(Bc) = 1.22 x 10⁻²) and DRB1*16:02 (OR = 2.63, P(Bc) = 1.46 x 10⁻⁵) were associated with GD. HLA-DPB1*05:01 is the major gene of GD in our population and singly accounts for 48.4% of population-attributable risk. CONCLUSIONS/SIGNIFICANCE: These GD-associated alleles we identified in ethnic Chinese Hans, and those identified in other Asian studies, are totally distinct from the known associated alleles in Caucasians. Identification of population-specific association alleles is the critical first step for individualized medicine. Furthermore, comparison between different susceptibility/protective alleles across populations could facilitate generation of novel hypothesis about GD pathophysiology and indicate a new direction for future investigation
Dynamic assembly of ribbon synapses and circuit maintenance in a vertebrate sensory system
Ribbon synapses transmit information in sensory systems, but their development is not well understood. To test the hypothesis that ribbon assembly stabilizes nascent synapses, we performed simultaneous time-lapse imaging of fluorescently-tagged ribbons in retinal cone bipolar cells (BCs) and postsynaptic densities (PSD95-FP) of retinal ganglion cells (RGCs). Ribbons and PSD95-FP clusters were more stable when these components colocalized at synapses. However, synapse density on ON-alpha RGCs was unchanged in mice lacking ribbons (ribeye knockout). Wildtype BCs make both ribbon-containing and ribbon-free synapses with these GCs even at maturity. Ribbon assembly and cone BC-RGC synapse maintenance are thus regulated independently. Despite the absence of synaptic ribbons, RGCs continued to respond robustly to light stimuli, although quantitative examination of the responses revealed reduced frequency and contrast sensitivity
Genetic Associations of Type 2 Diabetes with Islet Amyloid Polypeptide Processing and Degrading Pathways in Asian Populations
10.1371/journal.pone.0062378PLoS ONE86
Proteomic Analysis of Fusarium solani Isolated from the Asian Longhorned Beetle, Anoplophora glabripennis
Wood is a highly intractable food source, yet many insects successfully colonize and thrive in this challenging niche. Overcoming the lignin barrier of wood is a key challenge in nutrient acquisition, but full depolymerization of intact lignin polymers has only been conclusively demonstrated in fungi and is not known to occur by enzymes produced by insects or bacteria. Previous research validated that lignocellulose and hemicellulose degradation occur within the gut of the wood boring insect, Anoplophora glabripennis (Asian longhorned beetle), and that a fungal species, Fusarium solani (ATCC MYA 4552), is consistently associated with the larval stage. While the nature of this relationship is unresolved, we sought to assess this fungal isolate's ability to degrade lignocellulose and cell wall polysaccharides and to extract nutrients from woody tissue. This gut-derived fungal isolate was inoculated onto a wood-based substrate and shotgun proteomics using Multidimensional Protein Identification Technology (MudPIT) was employed to identify 400 expressed proteins. Through this approach, we detected proteins responsible for plant cell wall polysaccharide degradation, including proteins belonging to 28 glycosyl hydrolase families and several cutinases, esterases, lipases, pectate lyases, and polysaccharide deacetylases. Proteinases with broad substrate specificities and ureases were observed, indicating that this isolate has the capability to digest plant cell wall proteins and recycle nitrogenous waste under periods of nutrient limitation. Additionally, several laccases, peroxidases, and enzymes involved in extracellular hydrogen peroxide production previously implicated in lignin depolymerization were detected. In vitro biochemical assays were conducted to corroborate MudPIT results and confirmed that cellulases, glycosyl hydrolases, xylanases, laccases, and Mn- independent peroxidases were active in culture; however, lignin- and Mn- dependent peroxidase activities were not detected While little is known about the role of filamentous fungi and their associations with insects, these findings suggest that this isolate has the endogenous potential to degrade lignocellulose and extract nutrients from woody tissue
- …