375 research outputs found

    Back from a Predicted Climatic Extinction of an Island Endemic: A Future for the Corsican Nuthatch

    Get PDF
    The Corsican Nuthatch (Sitta whiteheadi) is red-listed as vulnerable to extinction by the IUCN because of its endemism, reduced population size, and recent decline. A further cause is the fragmentation and loss of its spatially-restricted favourite habitat, the Corsican pine (Pinus nigra laricio) forest. In this study, we aimed at estimating the potential impact of climate change on the distribution of the Corsican Nuthatch using species distribution models. Because this species has a strong trophic association with the Corsican and Maritime pines (P. nigra laricio and P. pinaster), we first modelled the current and future potential distribution of both pine species in order to use them as habitat variables when modelling the nuthatch distribution. However, the Corsican pine has suffered large distribution losses in the past centuries due to the development of anthropogenic activities, and is now restricted to mountainous woodland. As a consequence, its realized niche is likely significantly smaller than its fundamental niche, so that a projection of the current distribution under future climatic conditions would produce misleading results. To obtain a predicted pine distribution at closest to the geographic projection of the fundamental niche, we used available information on the current pine distribution associated to information on the persistence of isolated natural pine coppices. While common thresholds (maximizing the sum of sensitivity and specificity) predicted a potential large loss of the Corsican Nuthatch distribution by 2100, the use of more appropriate thresholds aiming at getting closer to the fundamental distribution of the Corsican pine predicted that 98% of the current presence points should remain potentially suitable for the nuthatch and its range could be 10% larger in the future. The habitat of the endemic Corsican Nuthatch is therefore more likely threatened by an increasing frequency and intensity of wildfires or anthropogenic activities than by climate change

    Diarrhoea in the critically ill is common, associated with poor outcome, and rarely due to Clostridium difficile

    Get PDF
    Diarrhoea is common in Intensive Care Unit (ICU) patients, with a reported prevalence of 15-38%. Many factors may cause diarrhoea, including Clostridium difficile, drugs (e.g. laxatives, antibiotics) and enteral feeds. Diarrhoea impacts on patient dignity, increases nursing workload and healthcare costs, and exacerbates morbidity through dermal injury, impaired enteral uptake and subsequent fluid imbalance. We analysed a cohort of 9331 consecutive patients admitted to a mixed general intensive care unit to establish the prevalence of diarrhoea in intensive care unit patients, and its relationship with infective aetiology and clinical outcomes. We provide evidence that diarrhoea is common (12.9% (1207/9331) prevalence) in critically ill patients, independently associated with increased intensive care unit length of stay (mean (standard error) 14.8 (0.26) vs 3.2 (0.09) days, p < 0.001) and mortality (22.0% (265/1207) vs 8.7% (705/8124), p < 0.001; adjusted hazard ratio 1.99 (95% CI 1.70-2.32), p < 0.001) compared to patients without diarrhoea even after adjusting for potential confounding factors, and infrequently caused by infective aetiology (112/1207 (9.2%)) such as Clostridium difficile (97/1048 (9.3%) tested) or virological causes (9/172 (5.7%) tested). Our findings suggest non-infective causes of diarrhoea in ICU predominate and pathophysiology of diarrhoea in critically ill patients warrants further investigation

    A three-dimensional view of structural changes caused by deactivation of fluid catalytic cracking catalysts

    Get PDF
    Since its commercial introduction three-quarters of a century ago, fluid catalytic cracking has been one of the most important conversion processes in the petroleum industry. In this process, porous composites composed of zeolite and clay crack the heavy fractions in crude oil into transportation fuel and petrochemical feedstocks. Yet, over time the catalytic activity of these composite particles decreases. Here, we report on ptychographic tomography, diffraction, and fluorescence tomography, as well as electron microscopy measurements, which elucidate the structural changes that lead to catalyst deactivation. In combination, these measurements reveal zeolite amorphization and distinct structural changes on the particle exterior as the driving forces behind catalyst deactivation. Amorphization of zeolites, in particular, close to the particle exterior, results in a reduction of catalytic capacity. A concretion of the outermost particle layer into a dense amorphous silica–alumina shell further reduces the mass transport to the active sites within the composite

    Totally laparoscopic versus conventional ileoanal pouch procedure – design of a single-centre, expertise based randomised controlled trial to compare the laparoscopic and conventional surgical approach in patients undergoing primary elective restorative proctocolectomy- LapConPouch-Trial

    Get PDF
    BACKGROUND: Restorative proctocolectomy is increasingly being performed minimal invasively but a totally laparoscopic technique has not yet been compared to the standard open technique in a randomized study. METHODS/DESIGN: This is a two armed, single centre, expertise based, preoperatively randomized, patient blinded study. It is designed as a two-group parallel superiority study. Power calculation revealed 80 patients per group in order to recruit the 65 patients to be analysed for the primary endpoint. The primary objective is to investigate intra-operative blood loss and the need for blood transfusions. We hypothesise that intra-operative blood loss and the need for peri-operative blood transfusions are significantly higher in the conventional group. Additionally a set of surgical and non-surgical parameters related to the operation will be analysed as secondary objectives. These will include operative time, complications, postoperative pain, lung function, postoperative length of hospital stay, a cosmetic score and pre-and postoperative quality of life. DISCUSSION: The trial will answer the question whether there is indeed an advantage in the laparoscopic group in regard to blood loss and the need for blood transfusions. Moreover, it will generate data on the safety and potential advantages and disadvantages of the minimally invasive approach

    Contrasting Roles for TLR Ligands in HIV-1 Pathogenesis

    Get PDF
    The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs). Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs) 5 and 9, we examined their effect on human immunodeficiency virus (HIV)-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist) treatment enhanced replication of CC chemokine receptor 5 (CCR 5)-tropic and CXC chemokine receptor 4 (CXCR4)-tropic HIV-1, treatment with oligodeoxynucleotide (ODN) M362 (TLR9 agonist) suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD) 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA)-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention

    Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX

    Get PDF
    The hexameric AAA+ ring of Escherichia coli ClpX, an ATP-dependent machine for protein unfolding and translocation, functions with the ClpP peptidase to degrade target substrates. For efficient function, ClpX subunits must switch between nucleotide-loadable (L) and nucleotide-unloadable (U) conformations, but the roles of switching are uncertain. Moreover, it is controversial whether working AAA+-ring enzymes assume symmetric or asymmetric conformations. Here, we show that a covalent ClpX ring with one subunit locked in the U conformation catalyzes robust ATP hydrolysis, with each unlocked subunit able to bind and hydrolyze ATP, albeit with highly asymmetric position-specific affinities. Preventing U↔L interconversion in one subunit alters the cooperativity of ATP hydrolysis and reduces the efficiency of substrate binding, unfolding and degradation, showing that conformational switching enhances multiple aspects of wild-type ClpX function. These results support an asymmetric and probabilistic model of AAA+-ring activity.National Institutes of Health (U.S.) (Grant GM-101988)Massachusetts Institute of Technology (Poitras Predoctoral Fellowship

    Real-time flow simulation of indoor environments using lattice Boltzmann method

    Get PDF
    A novel lattice Boltzmann method (LBM) based 3D computational fluid dynamics (CFD) technique has been implemented on the graphics processing unit (GPU) for the purpose of simulating the indoor environment in real-time. We study the time evolution of the turbulent airflow and temperature inside a test chamber and in a simple model of a four-bed hospital room. The predicted results from LBM are compared with traditional CFD based large eddy simulations (LES). Reasonable agreement between LBM results and LES method is observed with significantly faster computational times

    Forces exerted during exercises by patients with adolescent idiopathic scoliosis wearing fiberglass braces

    Get PDF
    OBJECTIVE: To quantify and compare the forces exerted by scoliosis patients in fiberglass braces during exercises usually prescribed in departments where casts are made. The exercises are intended to increase corrective forces, activate muscles, stimulate ventilation and help the patient psychologically. SETTING: Outpatient care. PATIENTS: 17 consecutive adolescent patients wearing fiberglass brace for idiopathic scoliosis. INTERVENTIONS: Exercises (kyphotization, rotation, "escape from the pad") in different positions (sitting, supine, on all fours). MAIN OUTCOME MEASURE: Pressure detected by the F-Socket System between the rib hump and the pad of the brace. RESULTS: In static and dynamic conditions, the position adopted did not alter the total pressure exerted by the brace, although the part of the sensor stimulated did vary. Kyphotization and rotation exercises produced a significant increase of pressure (+ 58.9% and +29.8%, respectively); however, the "escape from the pad" exercise, despite its name, did not produce any significant variation of pressure. CONCLUSION: Exercises in the brace allow adjunctive forces to be applied on soft tissues and through them, presumably on the spine. Different exercises can be chosen to obtain different actions. Physical exercises and sporting activities are useful in mechanical terms, although other important actions should not be overlooked

    Inhibition of Soluble Tumor Necrosis Factor Ameliorates Synaptic Alterations and Ca2+ Dysregulation in Aged Rats

    Get PDF
    The role of tumor necrosis factor α (TNF) in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1) are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2) in aged (22 months) but not young adult (6 months) Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4–6 week) intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits TNFR1 signaling. Aged rats treated with XPro1595 showed improved Morris Water Maze performance, reduced microglial activation, reduced susceptibility to hippocampal long-term depression, increased protein levels for the GluR1 type glutamate receptor, and lower L-type voltage sensitive Ca2+ channel (VSCC) activity in hippocampal CA1 neurons. The results suggest that diverse functional changes associated with brain aging may arise, in part, from selective alterations in TNF signaling

    The Effects of Vitamin D Receptor Silencing on the Expression of LVSCC-A1C and LVSCC-A1D and the Release of NGF in Cortical Neurons

    Get PDF
    Recent studies have suggested that vitamin D can act on cells in the nervous system. Associations between polymorphisms in the vitamin D receptor (VDR), age-dependent cognitive decline, and insufficient serum 25 hydroxyvitamin D(3) levels in Alzheimer's patients and elderly people with cognitive decline have been reported. We have previously shown that amyloid β (Aβ) treatment eliminates VDR protein in cortical neurons. These results suggest a potential role for vitamin D and vitamin D-mediated mechanisms in Alzheimer's disease (AD) and neurodegeneration. Vitamin D has been shown to down-regulate the L-type voltage-sensitive calcium channels, LVSCC-A1C and LVSCC-A1D, and up-regulate nerve growth factor (NGF). However, expression of these proteins when VDR is repressed is unknown. The aim of this study is to investigate LVSCC-A1C, LVSCC-A1D expression levels and NGF release in VDR-silenced primary cortical neurons prepared from Sprague-Dawley rat embryos.qRT-PCR and western blots were performed to determine VDR, LVSCC-A1C and -A1D expression levels. NGF and cytotoxicity levels were determined by ELISA. Apoptosis was determined by TUNEL. Our findings illustrate that LVSCC-A1C mRNA and protein levels increased rapidly in cortical neurons when VDR is down-regulated, whereas, LVSCC-A1D mRNA and protein levels did not change and NGF release decreased in response to VDR down-regulation. Although vitamin D regulates LVSCC-A1C through VDR, it may not regulate LVSCC-A1D through VDR.Our results indicate that suppression of VDR disrupts LVSCC-A1C and NGF production. In addition, when VDR is suppressed, neurons could be vulnerable to aging and neurodegeneration, and when combined with Aβ toxicity, it is possible to explain some of the events that occur during neurodegeneration
    • …
    corecore