28 research outputs found

    Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano

    Get PDF
    International audienceCaldera-forming volcanic eruptions are low-frequency, highimpact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales1. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained2,3. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-formingeruption of Santorini volcano,Greece4, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption5,6. Despite the large volume of erupted magma4 (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicicmagmabatches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems

    Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits

    Get PDF
    Chlorine and sulfur are of paramount importance for supporting the transport and deposition of ore metals at magmatic–hydrothermal systems such as the Coroccohuayco Fe–Cu–Au porphyry–skarn deposit, Peru. Here, we used recent partitioning models to determine the Cl and S concentration of the melts from the Coroccohuayco magmatic suite using apatite and amphibole chemical analyses. The pre-mineralization gabbrodiorite complex hosts S-poor apatite, while the syn- and post-ore dacitic porphyries host S-rich apatite. Our apatite data on the Coroccohuayco magmatic suite are consistent with an increasing oxygen fugacity (from the gabbrodiorite complex to the porphyries) causing the dominant sulfur species to shift from S2− to S6+ at upper crustal pressure where the magmas were emplaced. We suggest that this change in sulfur speciation could have favored S degassing, rather than its sequestration in magmatic sulfides. Using available partitioning models for apatite from the porphyries, pre-degassing S melt concentration was 20–200 ppm. Estimates of absolute magmatic Cl concentrations using amphibole and apatite gave highly contrasting results. Cl melt concentrations obtained from apatite (0.60 wt% for the gabbrodiorite complex; 0.2–0.3 wt% for the porphyries) seems much more reasonable than those obtained from amphibole which are very low (0.37 wt% for the gabbrodiorite complex; 0.10 wt% for the porphyries). In turn, relative variations of the Cl melt concentrations obtained from amphibole during magma cooling are compatible with previous petrological constraints on the Coroccohuayco magmatic suite. This confirms that the gabbrodioritic magma was initially fluid undersaturated upon emplacement, and that magmatic fluid exsolution of the gabbrodiorite and the pluton rooting the porphyry stocks and dikes were emplaced and degassed at 100–200 MPa. Finally, mass balance constraints on S, Cu and Cl were used to estimate the minimum volume of magma required to form the Coroccohuayco deposit. These three estimates are remarkably consistent among each other (ca. 100 km3) and suggest that the Cl melt concentration is at least as critical as that of Cu and S to form an economic mineralization

    Optimal foraging and community structure: implications for a guild of generalist grassland herbivores

    Full text link
    A particular linear programming model is constructed to predict the diets of each of 14 species of generalist herbivores at the National Bison Range, Montana. The herbivores have body masses ranging over seven orders of magnitude and belonging to two major taxa: insects and mammals. The linear programming model has three feeding constraints: digestive capacity, feeding time and energy requirements. A foraging strategy that maximizes daily energy intake agrees very well with the observed diets. Body size appears to be an underlying determinant of the foraging parameters leading to diet selection. Species that possess digestive capacity and feeding time constraints which approach each other in magnitude have the most generalized diets. The degree that the linear programming models change their diet predictions with a given percent change in parameter values (sensitivity) may reflect the observed ability of the species to vary their diets. In particular, the species which show the most diet variability are those whose diets tend to be balanced between monocots and dicots. The community-ecological parameters of herbivore body-size ranges and species number can possibly be related to foraging behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47765/1/442_2004_Article_BF00377109.pd

    Magma mixing in the San Francisco Volcanic Field, AZ

    Full text link
    A wide variety of rock types are present in the O'Leary Peak and Strawberry Crater volcanics of the Pliocene to Recent San Francisco Volcanic Field (SFVF), AZ. The O'Leary Peak flows range from andesite to rhyolite (56–72 wt % SiO 2 ) and the Strawberry Crater flows range from basalt to dacite (49–64 wt % SiO 2 ). Our interpretation of the chemical data is that both magma mixing and crustal melting are important in the genesis of the intermediate composition lavas of both suites. Observed chemical variations in major and trace elements can be modeled as binary mixtures between a crustal melt similar to the O'Leary dome rhyolite and two different mafic end-members. The mafic end-member of the Strawberry suite may be a primary mantle-derived melt. Similar basalts have also been erupted from many other vents in the SFVF. In the O'Leary Peak suite, the mafic end-member is an evolved (low Mg/(Mg+ Fe)) basalt that is chemically distinct from the Strawberry Crater and other vent basalts as it is richer in total Fe, TiO 2 , Al 2 O 3 , MnO, Na 2 O, K 2 O, and Zr and poorer in MgO, CaO, P 2 O 5 , Ni, Sc, Cr, and V. The derivative basalt probably results from fractional crystallization of the more primitive, vent basalt type of magma. This evolved basalt occurs as xenolithic (but originally magmatic) inclusions in the O'Leary domes and andesite porphyry flow. The most mafic xenolith may represent melt that mixed with the O'Leary dome rhyolite resulting in andesite preserved as other xenoliths, a pyroclastic unit (Qoap), porphyry flow (Qoaf) and dacite (Darton Dome) magmas. Thermal constraints on the capacity of a melt to assimilate (and melt) a volume of solid material require that melt mixing and not assimilation has produced the observed intermediate lavas at both Strawberry Crater and O'Leary Peak. Textures, petrography, and mineral chemistry support the magma mixing model. Some of the inclusions have quenched rims where in contact with the host. The intermediate rocks, including the andesite xenoliths, contain xenocrysts of quartz, olivine and oligoclase, together with reversely zoned plagioclase and pyroxene phenocrysts. The abundance of intermediate volcanic rocks in the SFVF, as observed in detail at O'Leary Peak and Strawberry Crater, is due in part to crustal recycling, the result of basalt-driven crustal melting and the subsequent mixing of the silicic melts with basalts and derivative magmas.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47288/1/410_2004_Article_BF00371086.pd

    Electrochemical measurements bearing on the oxidation state of the Skaergaard Layered Intrusion

    Full text link
    The oxygen fugacities (fO 2 's) of magnetically-concentrated fractions (MCF) of three rock samples from the Skaergaard Layered Intrusion were measured between 800–1150° C using oxygen-specific, solid zirconia electrolytes at atmospheric pressure. Two of the bulk rock samples (an oxide cumulate and an oxide-bearing gabbro) are from the Middle Zone (MZ) and the other (an olivine plagioclase orthocumulate) is from the Lower Zone (LZ). All MCF define fO 2 versus T arrays that lie 1.5–0.5 log units above the fayalite-magnetite-quartz (FMQ) buffer. Experiments with different cell-imposed initial redox states (one from a reduced direction and one from an oxidized direction) were run on each sample in an attempt to achieve experimental reversibility. This was accomplished by imposing a known redox memory on the galvanic cell prior to loading each sample. Reversibility for each sample agreed to better than 0.2 of a log unit. Irreversible autoreduction of 0.2 of a log unit was observed on the two MZ samples at temperatures exceeding 1065° C. Scanning electron microscope and electron microprobe study of pre- and post-run products shows that reaction and textural re-equilibration occurred among the oxide phase assemblages under the experimental conditions employed. Careful characterization of pre- and post-run assemblages is clearly necessary before adequate interpretation of the experimental results can be made in these types of electrochemical studies. Different approaches to investigations of the fO 2 of the Skaergaard Intrusion, be it thermodynamic calculations or experimental methods, should yield concordant results or at least understandable discrepancies. Calculated fO 2 's using thermobarometry applied to the ilmenite-magnetite pairs in the post-experimental assemblages agree with the experimentally determined fO 2 's to within one log unit at a given temperature. These results are also consistent with previously calculated fO 2 values (Buddington and Lindsley 1964; Morse et al. 1980), but are considerably more oxidized than a previous electrolyte-based fO 2 study of a different sample suite from the Skaergaard (Sato and Valenza 1980) that include values close to the iron-wustite (IW) buffer from both MZ and LZ oxide separates. Differences between this electrochemical study and that of Sato and Valenza (1980) may be due to variations in the level of indigenous (or curatorially-introduced) carbon in the samples studied. Despite a number of experimental difficulties, electrochemical cells can provide an accurate and precise method of determining the oxygen fugacity of naturally occurring, complex oxide assemblages. Tight experimental reversals and reproducible values obtained in heating and cooling cycles are an indication of the precision and accuracy of the data recoverable with electrochemical cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47287/1/410_2004_Article_BF00373730.pd
    corecore