57 research outputs found

    CD8+ T-Cells Expressing Interferon Gamma or Perforin Play Antagonistic Roles in Heart Injury in Experimental Trypanosoma Cruzi-Elicited Cardiomyopathy

    Get PDF
    In Chagas disease, CD8+ T-cells are critical for the control of Trypanosoma cruzi during acute infection. Conversely, CD8+ T-cell accumulation in the myocardium during chronic infection may cause tissue injury leading to chronic chagasic cardiomyopathy (CCC). Here we explored the role of CD8+ T-cells in T. cruzi-elicited heart injury in C57BL/6 mice infected with the Colombian strain. Cardiomyocyte lesion evaluated by creatine kinase-MB isoenzyme activity levels in the serum and electrical abnormalities revealed by electrocardiogram were not associated with the intensity of heart parasitism and myocarditis in the chronic infection. Further, there was no association between heart injury and systemic anti-T. cruzi CD8+ T-cell capacity to produce interferon-gamma (IFNγ) and to perform specific cytotoxicity. Heart injury, however, paralleled accumulation of anti-T. cruzi cells in the cardiac tissue. In T. cruzi infection, most of the CD8+ T-cells segregated into IFNγ+ perforin (Pfn)neg or IFNγnegPfn+ cell populations. Colonization of the cardiac tissue by anti-T. cruzi CD8+Pfn+ cells paralleled the worsening of CCC. The adoptive cell transfer to T. cruzi-infected cd8−/− recipients showed that the CD8+ cells from infected ifnγ−/−pfn+/+ donors migrate towards the cardiac tissue to a greater extent and caused a more severe cardiomyocyte lesion than CD8+ cells from ifnγ+/+pfn−/− donors. Moreover, the reconstitution of naïve cd8−/− mice with CD8+ cells from naïve ifnγ+/+pfn−/− donors ameliorated T. cruzi-elicited heart injury paralleled IFNγ+ cells accumulation, whereas reconstitution with CD8+ cells from naïve ifnγ−/−pfn+/+ donors led to an aggravation of the cardiomyocyte lesion, which was associated with the accumulation of Pfn+ cells in the cardiac tissue. Our data support a possible antagonist effect of CD8+Pfn+ and CD8+IFNγ+ cells during CCC. CD8+IFNγ+ cells may exert a beneficial role, whereas CD8+Pfn+ may play a detrimental role in T. cruzi-elicited heart injury

    Inducible Nitric Oxide Synthase in Heart Tissue and Nitric Oxide in Serum of Trypanosoma cruzi-Infected Rhesus Monkeys: Association with Heart Injury

    Get PDF
    Chagas disease, a neglected tropical disease caused by the protozoan Trypanosoma cruzi, afflicts from 8 to 15 million people in the Latin America. Chronic chagasic cardiomyopathy (CCC) is the most frequent manifestation of Chagas disease. Currently, patient management only mitigates CCC symptoms. The pathogenic factors leading to CCC remain unknown; therefore their comprehension may contribute to develop more efficient therapies. In patients, high nitric oxide (NO) levels have been associated with CCC severity. In T. cruzi-infected mice, NO, mainly produced via inducible nitric oxide synthase (iNOS/NOS2), is proposed to work in parasite control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, infected rhesus monkeys and iNOS/NOS2-deficient mice were used to explore the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. Chronically infected monkeys presented electrical abnormalities, myocarditis and fibrosis, resembling the spectrum of human CCC. Moreover, cardiomyocyte lesion correlated with iNOS/NOS2+ cells infiltrating the cardiac tissue. Our findings support that parasite-driven iNOS/NOS2+ cells accumulation in the cardiac tissue and NO overproduction contribute to cardiomyopathy severity, mainly disturbing the pathway involved in electrical synchrony in T. cruzi infection

    Vitamin A derivatives in the prevention and treatment of human cancer.

    Full text link
    Vitamin A is essential for normal cellular growth and differentiation. A vast amount of laboratory data have clearly demonstrated the potent antiproliferative and differentiation-inducing effects of vitamin A and the synthetic analogues (retinoids). Recent in-vitro work has led to the exciting proposal that protein kinase-C may be centrally involved in many of retinoids' anticancer actions including the effects on ornithine decarboxylase induction, intracellular polyamine levels, and epidermal growth factor receptor number. Several intervention trials have clearly indicated that natural vitamin A at clinically tolerable doses has only limited activity against human neoplastic processes. Therefore, clinical work has focused on the synthetic derivatives with higher therapeutic indexes. In human cancer prevention, retinoids have been most effective for skin diseases, including actinic keratosis, keratoacanthoma, epidermodysplasia verruciformis, dysplastic nevus syndrome, and basal cell carcinoma. Several noncutaneous premaligancies, however, are currently receiving more attention in retinoid trials. Definite retinoid activity has been documented in oral leukoplakia, laryngeal papillomatosis, superficial bladder carcinoma, cervical dysplasia, bronchial metaplasia, and preleukemia. Significant therapeutic advances are also occurring with this class of drugs in some drug-resistant malignancies and several others that have become refractory, including advanced basal cell cancer, mycosis fungoides, melanoma, acute promyelocytic leukemia, and squamous cell carcinoma of the skin and of the head and neck. This report comprehensively presents the clinical data using retinoids as anticancer agents in human premalignant disorders and outlines the ongoing and planned studies with retinoids in combination and adjuvant therapy
    • …
    corecore