405 research outputs found

    Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation

    Get PDF
    Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Omega_Ar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Omega_Ar,0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Var levels slightly above 1 and lower at Omega_Ar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Var derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Omega_Ar levels close to 1, with net shell growth ceasing at an Omega_Ar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean

    Multitaxonomic Diversity Patterns along a Desert Riparian–Upland Gradient

    Get PDF
    Riparian areas are noted for their high biodiversity, but this has rarely been tested across a wide range of taxonomic groups. We set out to describe species richness, species abundance, and community similarity patterns for 11 taxonomic groups (forbs & grasses, shrubs, trees, solpugids, spiders, scarab beetles, butterflies, lizards, birds, rodents, and mammalian carnivores) individually and for all groups combined along a riparian–upland gradient in semiarid southeastern Arizona, USA. Additionally, we assessed whether biological characteristics could explain variation in diversity along the gradient using five traits (trophic level, body size, life span, thermoregulatory mechanism, and taxonomic affiliation). At the level of individual groups diversity patterns varied along the gradient, with some having greater richness and/or abundance in riparian zones whereas others were more diverse and/or abundant in upland zones. Across all taxa combined, riparian zones contained significantly more species than the uplands. Community similarity between riparian and upland zones was low, and beta diversity was significantly greater than expected for most taxonomic groups, though biological traits explained little variance in diversity along the gradient. These results indicate heterogeneity amongst taxa in how they respond to the factors that structure ecological communities in riparian landscapes. Nevertheless, across taxonomic groups the overall pattern is one of greater species richness and abundance in riparian zones, coupled with a distinct suite of species

    The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 30 (2011): 321-328, doi:10.1007/s00338-010-0697-z.Rising concentrations of atmospheric CO2 are changing the carbonate chemistry of the oceans, a process known as ocean acidification (OA). Absorption of this CO2 by the surface oceans is increasing the amount of total dissolved inorganic carbon (DIC) and bicarbonate ion (HCO3 -) available for marine calcification, yet is simultaneously lowering the seawater pH and carbonate ion concentration ([CO3 2-]), and thus the saturation state of seawater with respect to aragonite (Ωar). We investigated the relative importance of [HCO3 -] versus [CO3 2-] for early calcification by new recruits (primary polyps settled from zooxanthellate larvae) of two tropical coral species, Favia fragum and Porites astreoides. The polyps were reared over a range of Ωar values, which were manipulated by both acid-addition at constant pCO2 (decreased total [HCO3 -] and [CO3 2-]) and by pCO2 elevation at constant alkalinity (increased [HCO3 -], decreased [CO3 2-]). Calcification after two weeks was quantified by weighing the complete skeleton (corallite) accreted by each polyp over the course of the experiment. Both species exhibited the same negative response to decreasing [CO3 2-] whether Ωar was lowered by acid-addition or by pCO2 elevation - calcification did not follow total DIC or [HCO3 -]. Nevertheless, the calcification response to decreasing [CO3 2-] was non-linear. A statistically significant decrease in calcification was only detected between Ωar = < 2.5 and Ωar = 1.1 – 1.5, where calcification of new recruits was reduced by 22 – 37 % per 1.0 decrease in Ωar. Our results differ from many previous studies that report a linear coral calcification response to OA, and from those showing that calcification increases with increasing [HCO3 -]. Clearly, the coral calcification response to OA is variable and complex. A deeper understanding of the biomineralization mechanisms and environmental conditions underlying these 3 variable responses is needed to support informed predictions about future OA impacts on corals and coral reefs.This study was supported by NSF award 0648157 (Cohen and McCorkle), NSF 1041106 (Cohen, McCorkle), NSF 1041052 (de Putron), the VITA foundation (de Putron), WHOI Ocean Life Institute (Cohen), PEI and EEB Departments at Princeton University, Bill and Anne Charrier, and the Anthony B. Evnin, Dean’s Roundtable, and Edmund Hayes Sr. senior thesis funds (Dillon)

    Diabetes mellitus and prostate cancer risk among older men: population-based case–control study

    Get PDF
    We investigate the relation between diabetes mellitus and risk of prostate cancer among older (age 65–79 years) men in a population-based case–control study of 407 incident histologically confirmed cases registered in the South Carolina Central Cancer Registry between 1999 and 2001 (70.6% response rate); controls were 393 men identified through the Health Care Financing Administration Medicare beneficiary file for South Carolina in 1999 (63.8% response rate). After adjusting for age, race, and prostate cancer screening in the past 5 years, a history of diabetes mellitus was associated with a reduced risk of prostate cancer (adjusted odds ratio (aOR)¼0.64; 95% confidence interval (CI)¼0.45, 0.91). The protective effect was stronger for those with complications associated with diabetes (aOR¼0.61; 95% CI¼0.42, 0.90) and for African-American men (aOR¼0.36; 95% CI¼0.21, 0.62). Additional research is needed to understand the biologic mechanisms by which diabetes may influence prostate cancer risk; genetic factors may play an important role in understanding this association

    Branch Mode Selection during Early Lung Development

    Get PDF
    Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio

    Improving outcomes for people with COPD by developing networks of general practices: evaluation of a quality improvement project in east London

    Get PDF
    BACKGROUND: Structured care for people with chronic obstructive pulmonary disease (COPD) can improve outcomes. Delivering care in a deprived ethnically diverse area can prove challenging. AIMS: Evaluation of a system change to enhance COPD care delivery in a primary care setting between 2010 and 2013 using observational data. METHODS: All 36 practices in one inner London primary care trust were grouped geographically into eight networks of 4-5 practices, each supported by a network manager, clerical staff and an educational budget. A multidisciplinary group, including a respiratory specialist and the community respiratory team, developed a 'care package' for COPD management, with financial incentives based on network achievements of clinical targets and supported case management and education. Monthly electronic dashboards enabled networks to track and improve performance. RESULTS: The size of network COPD registers increased by 10% in the first year. Between 2010 and 2013 completed care plans increased from 53 to 86.5%, pulmonary rehabilitation referrals rose from 45 to 70% and rates of flu immunisation from 81 to 83%, exceeding London and England figures. Hospital admissions decreased in Tower Hamlets from a historic high base. CONCLUSIONS: Investment of financial, organisational and educational resource into general practice networks was associated with clinically important improvements in COPD care in socially deprived, ethnically diverse communities. Key behaviour change included the following: collaborative working between practices driven by high-quality information to support performance review; shared financial incentives; and engagement between primary and secondary care clinicians

    An Evaluation of Prediction Equations for the 6 Minute Walk Test in Healthy European Adults Aged 50-85 Years

    Get PDF
    This study compared actual 6 minute walk test (6MWT) performance with predicted 6MWT using previously validated equations and then determined whether allometric modelling offers a sounder alternative to estimating 6MWT in adults aged 50-80 years.We compared actual 6MWT performance against predicted 6MWT in 125 adults aged 50-85 years (62 male, 63 female). In a second sample of 246 adults aged 50-85 years (74 male, 172 female), a new prediction equation for 6MWT performance was developed using allometric modelling. This equation was then cross validated using the same sample that the other prediction equations were compared with.Significant relationships were evident between 6MWT actual and 6MWT predicted using all of the commonly available prediction equations (all P<0.05 or better) with the exception of the Alameri et al prediction equation (P>0.05). A series of paired t-tests indicated significant differences between 6MWT actual and 6MWT predicted for all available prediction equations (all P<0.05 or better) with the exception of the Iwama et al equation (P = .540). The Iwama et al equation also had similar bias (79.8m) and a coefficient of variation of over 15%. Using sample 2, a log-linear model significantly predicted 6MWT from the log of body mass and height and age (P = 0.001, adjusted R2 = .526), predicting 52.6% of the variance in actual 6MWT. When this allometric equation was applied to the original sample, the relationship between 6MWT actual and 6MWT predicted was in excess of values reported for the other previously validated prediction equations (r = .706, P = 0.001). There was a significant difference between actual 6MWT and 6MWT predicted using this new equation (P = 0.001) but the bias, standard deviation of differences and coefficient of variation were all less than for the other equations.Where actual assessment of the 6MWT is not possible, the allometrically derived equation presented in the current study, offers a viable alternative which has been cross validated and has the least SD of differences and smallest coefficient of variation compared to any of the previously validated equations for the 6MWT

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    The Bs20x22 anti-CD20-CD22 bispecific antibody has more lymphomacidal activity than do the parent antibodies alone

    Get PDF
    Previous studies have shown that bispecific antibodies that target both CD20 and CD22 have in vivo lymphomacidal properties. We developed a CD20-CD22 bispecific antibody (Bs20x22) from anti-CD20 and the anti-CD22 monoclonal antibodies (mAb), rituximab and HB22.7, respectively. Bs20x22 was constructed using standard methods and was shown to specifically bind CD20 and CD22. In vitro cytotoxicity assays showed that Bs20x22 was three times more effective than either parent mAb alone and twice as effective as a combination of both parent mAb used at equimolar concentrations. Bs20x22 was also nearly four times more effective at inducing apoptosis than either mAb alone. Examination of the MAPK and SAPK signaling cascades revealed that Bs20x22 induced significantly more p38 phosphorylation than either mAb alone. In an in vivo human NHL xenograft model, treatment with Bs20x22 resulted in significantly greater tumor shrinkage and improved overall survival when compared to either mAb alone or treatment with a combination of HB22.7 and rituximab. The effect of the initial tumor volume was assessed by comparing the efficacy of Bs20x22 administered before xenografts grew versus treatment of established tumors; significantly, greater efficacy was found when treatment was initiated before tumors could become established
    corecore