24 research outputs found

    Parent-Completed Developmental Screening in Premature Children: A Valid Tool for Follow-Up Programs

    Get PDF
    Our goals were to (1) validate the parental Ages and Stages Questionnaires (ASQ) as a screening tool for psychomotor development among a cohort of ex-premature infants reaching 2 years, and (2) analyse the influence of parental socio-economic status and maternal education on the efficacy of the questionnaire. A regional population of 703 very preterm infants (<35 weeks gestational age) born between 2003 and 2006 were evaluated at 2 years by their parents who completed the ASQ, by a pediatric clinical examination, and by the revised Brunet Lezine psychometric test with establishment of a DQ score. Detailed information regarding parental socio-economic status was available for 419 infants. At 2 years corrected age, 630 infants (89.6%) had an optimal neuromotor examination. Overall ASQ scores for predicting a DQ score ≤85 produced an area under the receiver operator curve value of 0.85 (95% Confidence Interval:0.82–0.87). An ASQ cut-off score of ≤220 had optimal discriminatory power for identifying a DQ score ≤85 with a sensitivity of 0.85 (95%CI:0.75–0.91), a specificity of 0.72 (95%CI:0.69–0.75), a positive likelihood ratio of 3, and a negative likelihood ratio of 0.21. The median value for ASQ was not significantly associated with socio-economic level or maternal education. ASQ is an easy and reliable tool regardless of the socio-economic status of the family to predict normal neurologic outcome in ex-premature infants at 2 years of age. ASQ may be beneficial with a low-cost impact to some follow-up programs, and helps to establish a genuine sense of parental involvement

    Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere.

    Get PDF
    General concern about climate change has led to growing interest in the responses of terrestrial ecosystems to elevated concentrations of CO2 in the atmosphere. Experimentation during the last two to three decades using a large variety of approaches has provided sufficient information to conclude that enrichment of atmospheric CO2 may have severe impact on terrestrial ecosystems. This impact is mainly due to the changes in the organic C dynamics as a result of the effects of elevated CO2 on the primary source of organic C in soil, i.e., plant photosynthesis. As the majority of life in soil is heterotrophic and dependent on the input of plant-derived organic C, the activity and functioning of soil organisms will greatly be influenced by changes in the atmospheric CO2 concentration. In this review, we examine the current state of the art with respect to effects of elevated atmospheric CO2 on soil microbial communities, with a focus on microbial community structure. On the basis of the existing information, we conclude that the main effects of elevated atmospheric CO2 on soil microbiota occur via plant metabolism and root secretion, especially in C3 plants, thereby directly affecting the mycorrhizal, bacterial, and fungal communities in the close vicinity of the root. There is little or no direct effect on the microbial community of the bulk soil. In particular, we have explored the impact of these changes on rhizosphere interactions and ecosystem processes, including food web interactions

    Immunohistochemical demonstration of FC receptors in rat tissues using immune complexes as ligand

    No full text
    To demonstrate the presence and localization of Fc receptors, rat liver cryostat sections were incubated with heterologous and autologous immune complexes (ICx) and immunoglobulin (Ig) aggregates. Binding was demonstrated using the immunoperoxidase technique. Autologous and heterologous ICx as well as aggregates from human and rat Ig appeared to bind to the sinusoidal wall. ICx bind in preference to aggregates. Monomeric Ig and aggregated Ig from swine and rabbit did not bind. The results demonstrated that ICx and rat and human Ig aggregates were bound via an Fc receptor. This Fc receptor was still intact in livers from carbontetra chloride and galactosamine treated rats. The receptor could also be demonstrated on spleen macrophages and on kidney interstitial cells. This method turned out to be an useful functional histochemical method to localize Fc receptors and to demonstrate their affinity and species specificity in tissue

    Bottom–up or top–down control in forest soil microcosms? Effects of soil fauna on fungal biomass and C/N mineralisation

    No full text
    A major question in soil ecology is whether soil food webs are regulated by resources or by predators, i.e. bottom-up (donor) or top-down controlled. We tested the hypothesis that meso- and macrofaunal soil predators can regulate fungivore populations and, thereby cause a top-down cascade effect on fungal biomass and decomposition/mineralisation processes in boreal forest soils. The study was performed as a microcosm experiment with two contrasting soils (humus layers), one poor and one rich in N, and with different combinations of fungivore and predator soil fauna added to "defaunated" soil. In comparison with control microcosms lacking mesofauna (but with nematodes and protozoans), the presence of a diverse Collembola and Oribatida fungivore community significantly reduced the FDA-active fungal biomass or tended to reduce the ergosterol fraction of the fungal biomass in the N-poor humus, but no clear effect could be detected in the N-rich humus. Fungivores as well as fungivores plus predators (a predator community consisting of gamasids, spiders and beetles or a subset thereof) reduced C mineralisation and increased net N mineralisation in both soils. The presence of predators (particularly gamasid mites) reduced collembolan numbers and alleviated the negative effect of fungivores on fungal biomass in the N-poor soil. In the N-rich soil, the presence of predators increased fungal biomass (ergosterol) in relation to the "defaunated" soil. Therefore, a top-down trophic cascade could be detected in the N-poor humus but not in the N-rich humus. Our results suggest that the degree of top-down control in soil fauna communities depends on resource quality and soil fertility
    corecore