5 research outputs found

    International outbreak of Salmonella Oranienburg due to German chocolate

    Get PDF
    BACKGROUND: This report describes a large international chocolate-associated Salmonella outbreak originating from Germany. METHODS: We conducted epidemiologic investigations including a case-control study, and food safety investigations. Salmonella (S.) Oranienburg isolates were subtyped by the use of pulsed-field gel electrophoresis (PFGE). RESULTS: From 1 October 2001 through 24 March 2002, an estimated excess of 439 S. Oranienburg notifications was registered in Germany. Simultaneously, an increase in S. Oranienburg infections was noted in other European countries in the Enter-net surveillance network. In a multistate matched case-control study in Germany, daily consumption of chocolate (matched odds ratio [MOR]: 4.8; 95% confidence interval [CI]: 1.3–26.5), having shopped at a large chain of discount grocery stores (MOR: 4.2; CI: 1.2–23.0), and consumption of chocolate purchased there (MOR: 5.0; CI: 1.1–47.0) were associated with illness. Subsequently, two brands from the same company, one exclusively produced for that chain, tested positive for S. Oranienburg. In two other European countries and in Canada chocolate from company A was ascertained that also contained S. Oranienburg. Isolates from humans and from chocolates had indistinguishable PFGE profiles. No source or point of contamination was identified. Epidemiological identification of chocolate as a vehicle of infections required two months, and was facilitated by proxy measures. CONCLUSIONS: Despite the use of improved production technologies, the chocolate industry continues to carry a small risk of manufacturing Salmonella-containing products. Particularly in diffuse outbreak-settings, clear associations with surrogates of exposure should suffice to trigger public health action. Networks such as Enter-net have become invaluable for facilitating rapid and appropriate management of international outbreaks

    Microbiota dynamics and diversity at different stages of industrial processing of cocoa beans into cocoa powder

    Get PDF
    We sampled a cocoa powder production line to investigate the impact of processing on the microbial community size and diversity at different stages. Classical microbiological methods were combined with 16S rRNA gene PCR-denaturing gradient gel electrophoresis, coupled with clone library construction, to analyze the samples. Aerobic thermoresistant spores (ThrS) (100°C; 10 min) were also isolated and characterized (identity, genetic diversity, and spore heat resistance), in view of their relevance to the quality of downstream heat-treated cocoa-flavored drinks. In the nibs (broken, shelled cocoa beans), average levels of total aerobic microorganisms (TAM) (4.4 to 5.6 log CFU/g) and aerobic total spores (TS) (80°C; 10 min; 4.3 to 5.5 log CFU/g) were significantly reduced (

    Chocolate and Confectionary

    No full text
    Confectionary products are often considered relatively inert from a microbiological perspective. Nevertheless, several Salmonella outbreaks have been attributed to confectionary, particularly chocolate products. The cause of these outbreaks was generally traced back to lapses in GMP, particularly cross contact issues and water ingress. Managing Salmonella in chocolate manufacture begins with a validated cocoa bean-roasting process. However, the potential for pathogen recontamination exists with the addition of ingredients and inclusions post process. This risk can be managed by a stringent supplier assurance program including prerelease microbiological testing of these materials. In addition to assured ingredients, the manufacturing environment must include a strict containment policy for raw and finished goods, control of water use including the prevention of water leaks, and ongoing microbial surveillance. Manufacturing equipment needs to be hygienically designed and amenable to sanitation processes, should a contamination event occur. Lastly, an effective microbiological verification program is essential to ensure all described processes are in control

    Engineered materials for organoid systems

    No full text
    corecore