64 research outputs found

    Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study

    Get PDF
    Background DNA methylation is a key epigenetic mechanism that is suggested to be associated with blood lipid levels. We aimed to identify CpG sites at which DNA methylation levels are associated with blood levels of triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol in 725 participants of the Rotterdam Study, a population-based cohort study. Subsequently, we sought replication in a non-overlapping set of 760 participants. Results Genome-wide methylation levels were measured in whole blood using the Illumina Methylation 450 array. Associations between lipid levels and DNA methylation beta values were examined using linear mixed-effect models. All models were adjusted for sex, age, smoking, white blood cell proportions, array number, and position on array. A Bonferroni-corrected p value lower than 1.08 × 10−7 was considered statistically significant. Five CpG sites annotated to genes including DHCR24, CPT1A, ABCG1, and SREBF1 were identified and replicated. Four CpG sites were associated with triglycerides, including CpG sites annotated to CPT1A (cg00574958 and cg17058475), ABCG1 (cg06500161), and SREBF1 (cg11024682). Two CpG sites were associated with HDL-C, including ABCG1 (cg06500161) and DHCR24 (cg17901584). No significant associations were observed with LDL-C or total cholesterol. Conclusions We report an association of HDL-C levels with methylation of a CpG site near DHCR24, a protein-coding gene involved in cholesterol biosynthesis, which has previously been reported to be associated with other metabolic traits. Furthermore, we confirmed previously reported associations of methylation of CpG sites within CPT1A, ABCG1, and SREBF1 and lipids. These results provide insight in the mechanisms that are involved in lipid metabolism

    Harmonising measures of knee and hip osteoarthritis in population-based cohort studies: an international study

    Get PDF
    Objective: Population-based osteoarthritis (OA) cohorts provide vital data on risk factors and outcomes of OA, however the methods to define OA vary between cohorts. We aimed to provide recommendations for combining knee and hip OA data in extant and future population cohort studies, in order to facilitate informative individual participant level analyses. Method: International OA experts met to make recommendations on: 1) defining OA by X-ray and/or pain; 2) compare The National Health and Nutrition Examination Survey (NHANES)-type OA pain questions; 3) the comparability of the Western Ontario & McMaster Universities Osteoarthritis Index (WOMAC) scale to NHANES-type OA pain questions; 4) the best radiographic scoring method; 5) the usefulness of other OA outcome measures. Key issues were explored using new analyses in two population-based OA cohorts (Multicenter Osteoarthritis Study; MOST and Osteoarthritis Initiative OAI). Results: OA should be defined by both symptoms and radiographs, with symptoms alone as a secondary definition. Kellgren and Lawrence (K/L) grade ≥2 should be used to define radiographic OA (ROA). The variable wording of pain questions can result in varying prevalence between 41.0% and 75.4%, however questions where the time anchor is similar have high sensitivity and specificity (91.2% and 89.9% respectively). A threshold of 3 on a 0–20 scale (95% CI 2.1, 3.9) in the WOMAC pain subscale demonstrated equivalence with the preferred NHANES-type question. Conclusion: This research provides recommendations, based on expert agreement, for harmonising and combining OA data in existing and future population-based cohorts

    Contemporary review of risk-stratified management in acute uncomplicated and complicated diverticulitis

    Get PDF
    BACKGROUND: Acute colonic diverticulitis is a common clinical condition. Severity of the disease is based on clinical, laboratory, and radiological investigations and dictates the need for medical or surgical intervention. Recent clinical trials have improved the understanding of the natural history of the disease resulting in new approaches to and better evidence for the management of acute diverticulitis. METHODS: We searched the Cochrane Library (years 2004-2015), MEDLINE (years 2004-2015), and EMBASE (years 2004-2015) databases. We used the search terms "diverticulitis, colonic" or "acute diverticulitis" or "divertic*" in combination with the terms "management," "antibiotics," "non-operative," or "surgery." Registers for clinical trials (such as the WHO registry and the https://clinicaltrials.gov/) were searched for ongoing, recruiting, or closed trials not yet published. RESULTS: Antibiotic treatment can be avoided in simple, non-complicated diverticulitis and outpatient management is safe. The management of complicated disease, ranging from a localized abscess to perforation with diffuse peritonitis, has changed towards either percutaneous or minimally invasive approaches in selected cases. The role of laparoscopic lavage without resection in perforated non-fecal diverticulitis is still debated; however, recent evidence from two randomised controlled trials has found a higher re-intervention in this group of patients. CONCLUSIONS: A shift in management has occurred towards conservative management in acute uncomplicated disease. Those with uncomplicated acute diverticulitis may be treated without antibiotics. For complicated diverticulitis with purulent peritonitis, the use of peritoneal lavage appears to be non-superior to resection

    The Rotterdam Study: objectives and design update

    Get PDF
    The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in the Netherlands. The study targets cardiovascular, neurological, ophthalmological and endocrine diseases. As of 2008 about 15,000 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in some 600 research articles and reports (see http://www.epib.nl/rotterdamstudy). This article gives the reasons for the study and its design. It also presents a summary of the major findings and an update of the objectives and methods

    VKORC1 Common Variation and Bone Mineral Density in the Third National Health and Nutrition Examination Survey

    Get PDF
    Osteoporosis, defined by low bone mineral density (BMD), is common among postmenopausal women. The distribution of BMD varies across populations and is shaped by both environmental and genetic factors. Because the candidate gene vitamin K epoxide reductase complex subunit 1 (VKORC1) generates vitamin K quinone, a cofactor for the gamma-carboxylation of bone-related proteins such as osteocalcin, we hypothesized that VKORC1 genetic variants may be associated with BMD and osteoporosis in the general population. To test this hypothesis, we genotyped six VKORC1 SNPs in 7,159 individuals from the Third National Health and Nutrition Examination Survey (NHANES III). NHANES III is a nationally representative sample linked to health and lifestyle variables including BMD, which was measured using dual energy x-ray absorptiometry (DEXA) on four regions of the proximal femur. In adjusted models stratified by race/ethnicity and sex, SNPs rs9923231 and rs9934438 were associated with increased BMD (p = 0.039 and 0.024, respectively) while rs8050894 was associated with decreased BMD (p = 0.016) among non-Hispanic black males (n = 619). VKORC1 rs2884737 was associated with decreased BMD among Mexican-American males (n = 795; p = 0.004). We then tested for associations between VKORC1 SNPs and osteoporosis, but the results did not mirror the associations observed between VKORC1 and BMD, possibly due to small numbers of cases. This is the first report of VKORC1 common genetic variation associated with BMD, and one of the few reports available that investigate the genetics of BMD and osteoporosis in diverse populations

    The Rotterdam Study: 2010 objectives and design update

    Get PDF
    The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in close to a 1,000 research articles and reports (see www.epib.nl/rotterdamstudy). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods

    DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases

    Get PDF
    We performed a multi-ethnic Epigenome Wide Association study on 22,774 individuals to describe the DNA methylation signature of chronic low-grade inflammation as measured by C-Reactive protein (CRP). We find 1,511 independent differentially methylated loci associated with CRP. These CpG sites show correlation structures across chromosomes, and are primarily situated in euchromatin, depleted in CpG islands. These genomic loci are predominantly situated in transcription factor binding sites and genomic enhancer regions. Mendelian randomization analysis suggests altered CpG methylation is a consequence of increased blood CRP levels. Mediation analysis reveals obesity and smoking as important underlying driving factors for changed CpG methylation. Finally, we find that an activated CpG signature significantly increases the risk for cardiometabolic diseases and COPD

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    BACKGROUND: Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. RESULTS: Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. CONCLUSION: This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity

    An integrative cross-omics analysis of DNA methylation sites of glucose and insulin homeostasis

    Get PDF
    Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D

    Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations

    Get PDF
    Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation
    corecore