72 research outputs found

    Accuracy and repeatability of wrist joint angles in boxing using an electromagnetic tracking system

    Get PDF
    © 2019, The Author(s). The hand-wrist region is reported as the most common injury site in boxing. Boxers are at risk due to the amount of wrist motions when impacting training equipment or their opponents, yet we know relatively little about these motions. This paper describes a new method for quantifying wrist motion in boxing using an electromagnetic tracking system. Surrogate testing procedure utilising a polyamide hand and forearm shape, and in vivo testing procedure utilising 29 elite boxers, were used to assess the accuracy and repeatability of the system. 2D kinematic analysis was used to calculate wrist angles using photogrammetry, whilst the data from the electromagnetic tracking system was processed with visual 3D software. The electromagnetic tracking system agreed with the video-based system (paired t tests) in both the surrogate ( 0.9). In the punch testing, for both repeated jab and hook shots, the electromagnetic tracking system showed good reliability (ICCs > 0.8) and substantial reliability (ICCs > 0.6) for flexion–extension and radial-ulnar deviation angles, respectively. The results indicate that wrist kinematics during punching activities can be measured using an electromagnetic tracking system

    Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii

    Get PDF
    © International Society for Microbial Ecology, 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in The ISME Journal 5 (2011): 1748–1758, doi:10.1038/ismej.2011.48.A novel hydrothermal field has been discovered at the base of Lƍihi Seamount, Hawaii, at 5000 mbsl. Geochemical analyses demonstrate that ‘FeMO Deep’, while only 0.2 °C above ambient seawater temperature, derives from a distal, ultra-diffuse hydrothermal source. FeMO Deep is expressed as regional seafloor seepage of gelatinous iron- and silica-rich deposits, pooling between and over basalt pillows, in places over a meter thick. The system is capped by mm to cm thick hydrothermally derived iron-oxyhydroxide- and manganese-oxide-layered crusts. We use molecular analyses (16S rDNA-based) of extant communities combined with fluorescent in situ hybridizations to demonstrate that FeMO Deep deposits contain living iron-oxidizing Zetaproteobacteria related to the recently isolated strain Mariprofundus ferroxydans. Bioenergetic calculations, based on in-situ electrochemical measurements and cell counts, indicate that reactions between iron and oxygen are important in supporting chemosynthesis in the mats, which we infer forms a trophic base of the mat ecosystem. We suggest that the biogenic FeMO Deep hydrothermal deposit represents a modern analog for one class of geological iron deposits known as ‘umbers’ (for example, Troodos ophilolites, Cyprus) because of striking similarities in size, setting and internal structures.Funding has been provided by the NSF Microbial Observatories Program (KJE, DE, BT, HS and CM), by the Gordon and Betty Moore Foundation (KJE), the College of Letters, Arts, and Sciences at the University of Southern California (KJE) and by the NASA Astrobiology Institute (KJE, DE)

    Chasing Migration Genes: A Brain Expressed Sequence Tag Resource for Summer and Migratory Monarch Butterflies (Danaus plexippus)

    Get PDF
    North American monarch butterflies (Danaus plexippus) undergo a spectacular fall migration. In contrast to summer butterflies, migrants are juvenile hormone (JH) deficient, which leads to reproductive diapause and increased longevity. Migrants also utilize time-compensated sun compass orientation to help them navigate to their overwintering grounds. Here, we describe a brain expressed sequence tag (EST) resource to identify genes involved in migratory behaviors. A brain EST library was constructed from summer and migrating butterflies. Of 9,484 unique sequences, 6068 had positive hits with the non-redundant protein database; the EST database likely represents ∌52% of the gene-encoding potential of the monarch genome. The brain transcriptome was cataloged using Gene Ontology and compared to Drosophila. Monarch genes were well represented, including those implicated in behavior. Three genes involved in increased JH activity (allatotropin, juvenile hormone acid methyltransfersase, and takeout) were upregulated in summer butterflies, compared to migrants. The locomotion-relevant turtle gene was marginally upregulated in migrants, while the foraging and single-minded genes were not differentially regulated. Many of the genes important for the monarch circadian clock mechanism (involved in sun compass orientation) were in the EST resource, including the newly identified cryptochrome 2. The EST database also revealed a novel Na+/K+ ATPase allele predicted to be more resistant to the toxic effects of milkweed than that reported previously. Potential genetic markers were identified from 3,486 EST contigs and included 1599 double-hit single nucleotide polymorphisms (SNPs) and 98 microsatellite polymorphisms. These data provide a template of the brain transcriptome for the monarch butterfly. Our “snap-shot” analysis of the differential regulation of candidate genes between summer and migratory butterflies suggests that unbiased, comprehensive transcriptional profiling will inform the molecular basis of migration. The identified SNPs and microsatellite polymorphisms can be used as genetic markers to address questions of population and subspecies structure

    Viral, bacterial, and fungal infections of the oral mucosa:Types, incidence, predisposing factors, diagnostic algorithms, and management

    Get PDF

    The Gene Pool Concept Applied to Crop Wild Relatives: An Evolutionary Perspective

    Get PDF
    Crop wild relatives (CWR) can provide important resources for the genetic improvement of cultivated species. Because crops are often related to many wild species and because exploration of CWR for useful traits can take many years and substantial resources, the categorization of CWR based on a comprehensive assessment of their potential for use is an important knowledge foundation for breeding programs. The initial approach for categorizing CWR was based on crossing studies to empirically establish which species were interfertile with the crop. The foundational concept of distinct gene pools published almost 50 years ago was developed from these observations. However, the task of experimentally assessing all potential CWR proved too vast; therefore, proxies based on phylogenetic and other advanced scientific information have been explored. A current major approach to categorize CWR aims to comprehensively synthesize experimental data, taxonomic information, and phylogenetic studies. This approach very often ends up relying not only on the synthesis of data but also intuition and expert opinion and is therefore difficult to apply widely in a reproducible manner. Here, we explore the potential for a stronger standardization of the categorization method, with focus on evolutionary relationships among species combined with information on patterns of interfertility between species. Evolutionary relationships can be revealed with increasing resolution via next-generation sequencing, through the application of the multispecies coalescent model and using focused analyses on species discovery and delimitation that bridge population genetics and phylogenetics fields. Evolutionary studies of reproductive isolation can inform the understanding of patterns of interfertility in plants. For CWR, prezygotic postpollination reproductive barriers and intrinsic postzygotic barriers are the most important factors and determine the probability of producing viable and fertile offspring. To further the assessment of CWR for use in plant breeding, we present observed and predicted gene pool indices. The observed index quantifies patterns of interfertility based on fertilization success, seed production, offspring viability, and hybrid fertility. The predicted gene pool index requires further development of the understanding of quantitative and qualitative relationships between reproductive barriers, measures of genetic relatedness, and other relevant characteristics for crops and their wild relatives

    Conversation Analysis of Veterinarians' Proposals for Long-Term Dietary Change in Companion Animal Practice in Ontario, Canada.

    No full text
    Nutritional changes recommended by veterinarians to clients can have a major role in animal-patient health. Although there is literature on best practices that can inform veterinary communication training, little is known specifically about how veterinarians communicate their recommendations to clients in real-life interactions. This study used the qualitative research method of conversation analysis to investigate the form and content of veterinarian-initiated proposals for long-term dietary change in canine and feline patients to further inform veterinary communication training. We analyzed the characteristics and design of veterinarian-initiated proposals for long-term nutritional modification as well as the appointment phases during which they occurred, in a subsample of 42 videotaped segments drawn from 35 companion animal appointments in eastern Ontario, Canada. Analyses indicated that veterinarians initiated proposals at various points during the consultations rather than as a predictable part of treatment planning at the end. While some proposals were worded strongly (e.g., "She should be on
"), most proposals avoided the presumption that dietary change would inevitably occur. Such proposals described dietary items as options (e.g., "There are also special diets
") or used mitigating language (e.g., "you may want to try
"). These findings seem to reflect delicate veterinarian-client dynamics associated with dietary advice-giving in veterinary medicine that can impact adherence and limit shared decision-making. Our analyses offer guidance for communication training in veterinary education related to dietary treatment decision-making

    Conversation analysis of veterinarians' proposals for long-term dietary change in companion animal practice in Ontario, Canada

    No full text
    Nutritional changes recommended by veterinarians to clients can have a major role in animal-patient health. Although there is literature on best practices that can inform veterinary communication training, little is known specifically about how veterinarians communicate their recommendations to clients in real-life interactions. This study used the qualitative research method of conversation analysis to investigate the form and content of veterinarian-initiated proposals for long-term dietary change in canine and feline patients to further inform veterinary communication training. We analyzed the characteristics and design of veterinarian-initiated proposals for long-term nutritional modification as well as the appointment phases during which they occurred, in a subsample of 42 videotaped segments drawn from 35 companion animal appointments in eastern Ontario, Canada. Analyses indicated that veterinarians initiated proposals at various points during the consultations rather than as a predictable part of treatment planning at the end. While some proposals were worded strongly (e.g., “She should be on
”), most proposals avoided the presumption that dietary change would inevitably occur. Such proposals described dietary items as options (e.g., “There are also special diets
”) or used mitigating language (e.g., “you may want to try
”). These findings seem to reflect delicate veterinarian–client dynamics associated with dietary advice-giving in veterinary medicine that can impact adherence and limit shared decision-making. Our analyses offer guidance for communication training in veterinary education related to dietary treatment decision-making

    Hunting and Gathering Economies

    No full text
    • 

    corecore