36 research outputs found

    Optimization of PCR conditions to amplify microsatellite loci in the bunchgrass lizard (Sceloporus slevini) genomic DNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microsatellites, also called Simple Sequence Repeats (SSRs), repetitions of nucleotide motifs of 1-5 bases, are currently the markers of choice due to their abundant distribution in the genomes, and suitability for high-throughput analysis. A total of five different primer pairs were optimized for polymerase chain reaction (PCR) to amplify microsatellite loci in total genomic DNA of bunchgrass lizards (<it>Sceloporus slevini</it>) collected from three sites in southeastern Arizona; the Sonoita Plain, Chiricahua Mountains and Huachuca Mountains.</p> <p>Findings</p> <p>The primers used for current investigation were originally designed for the Eastern Fence Lizard (<it>Sceloporus undulatus</it>). Five primer pairs were selected based on annealing temperatures for optimizing the PCR conditions to amplify with bunchgrass lizards. Different concentrations of DNA and annealing temperature were optimized. While keeping other reagents constant, a DNA concentration, 37.5 ng in the final reaction volume and PCR conditions of an initial denaturation of 94°C for five minutes, an annealing temperature of 55°C and final extension of 72°C for four minutes gave the best amplification for all the primer pairs.</p> <p>Conclusions</p> <p>Modifying the standard protocol for annealing temperatures and final extension time increases the success of cross amplification of specific microsatellite loci in the bunchgrass lizard. A loading volume of 5 ul DNA at a concentration of 10 ng/ul and a 2% agarose for gel electrophoresis were observed the best for cross amplification of selected five primer pairs on bunch grass lizard.</p> <p>Trial Registration</p> <p>The research was conducted with Arizona Game and Fish Department scientific collecting permits SP565256, SP657407 & SP749119 to Dr. Christian A d'Orgeix.</p

    Finding the sources of missing heritability in a yeast cross

    Get PDF
    For many traits, including susceptibility to common diseases in humans, causal loci uncovered by genetic mapping studies explain only a minority of the heritable contribution to trait variation. Multiple explanations for this "missing heritability" have been proposed. Here we use a large cross between two yeast strains to accurately estimate different sources of heritable variation for 46 quantitative traits and to detect underlying loci with high statistical power. We find that the detected loci explain nearly the entire additive contribution to heritable variation for the traits studied. We also show that the contribution to heritability of gene-gene interactions varies among traits, from near zero to 50%. Detected two-locus interactions explain only a minority of this contribution. These results substantially advance our understanding of the missing heritability problem and have important implications for future studies of complex and quantitative traits

    Introgression and rapid species turnover in sympatric damselflies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studying contemporary hybridization increases our understanding of introgression, adaptation and, ultimately, speciation. The sister species <it>Ischnura elegans </it>and <it>I. graellsii </it>(Odonata: Coenagrionidae) are ecologically, morphologically and genetically similar and hybridize. Recently, <it>I. elegans </it>has colonized northern Spain, creating a broad sympatric region with <it>I. graellsii</it>. Here, we review the distribution of both species in Iberia and evaluate the degree of introgression of <it>I. graellsii </it>into <it>I. elegans </it>using six microsatellite markers (442 individuals from 26 populations) and five mitochondrial genes in sympatric and allopatric localities. Furthermore, we quantify the effect of hybridization on the frequencies of the genetically controlled colour polymorphism in females of both species.</p> <p>Results</p> <p>In a principal component analysis of the microsatellite data, the first two principal components summarised almost half (41%) of the total genetic variation. The first axis revealed a clear separation of <it>I. graellsii </it>and <it>I</it>. <it>elegans </it>populations, while the second axis separated <it>I. elegans </it>populations. Admixture analyses showed extensive hybridization and introgression in <it>I. elegans </it>populations, consistent with <it>I. elegans </it>backcrosses and occasional F<sub>1</sub>-hybrids, suggesting hybridization is on-going. More specifically, approximately 58% of the 166 Spanish <it>I. elegans </it>individuals were assigned to the <it>I. elegans </it>backcross category, whereas not a single of those individuals was assigned to the backcross with <it>I. graellsii</it>. The mitochondrial genes held little genetic variation, and the most common haplotype was shared by the two species.</p> <p>Conclusions</p> <p>The results suggest rapid species turnover in sympatric regions in favour of <it>I. elegans</it>, corroborating previous findings that <it>I. graellsii </it>suffers a mating disadvantage in sympatry with <it>I. elegans</it>. Examination of morph frequency dynamics indicates that hybridization is likely to have important implications for the maintenance of multiple female morphs, in particular during the initial period of hybridization.</p

    Integration of sequence data from a consanguineous family with genetic data from an outbred population identifies PLB1 as a candidate rheumatoid arthritis risk gene

    Get PDF
    Integrating genetic data from families with highly penetrant forms of disease together with genetic data from outbred populations represents a promising strategy to uncover the complete frequency spectrum of risk alleles for complex traits such as rheumatoid arthritis (RA). Here, we demonstrate that rare, low-frequency and common alleles at one gene locus, phospholipase B1 (PLB1), might contribute to risk of RA in a 4-generation consanguineous pedigree (Middle Eastern ancestry) and also in unrelated individuals from the general population (European ancestry). Through identity-by-descent (IBD) mapping and whole-exome sequencing, we identified a non-synonymous c.2263G>C (p.G755R) mutation at the PLB1 gene on 2q23, which significantly co-segregated with RA in family members with a dominant mode of inheritance (P = 0.009). We further evaluated PLB1 variants and risk of RA using a GWAS meta-analysis of 8,875 RA cases and 29,367 controls of European ancestry. We identified significant contributions of two independent non-coding variants near PLB1 with risk of RA (rs116018341 [MAF = 0.042] and rs116541814 [MAF = 0.021], combined P = 3.2×10-6). Finally, we performed deep exon sequencing of PLB1 in 1,088 RA cases and 1,088 controls (European ancestry), and identified suggestive dispersion of rare protein-coding variant frequencies between cases and controls (P = 0.049 for C-alpha test and P = 0.055 for SKAT). Together, these data suggest that PLB1 is a candidate risk gene for RA. Future studies to characterize the full spectrum of genetic risk in the PLB1 genetic locus are warranted. © 2014 Plenge et al

    The genetic heterogeneity of colorectal cancer predisposition - guidelines for gene discovery

    Get PDF

    Droplet barcoding for massively parallel single-molecule deep sequencing

    No full text
    The ability to accurately sequence long DNA molecules is important across biology, but existing sequencers are limited in read length and accuracy. Here, we demonstrate a method to leverage short-read sequencing to obtain long and accurate reads. Using droplet microfluidics, we isolate, amplify, fragment and barcode single DNA molecules in aqueous picolitre droplets, allowing the full-length molecules to be sequenced with multi-fold coverage using short-read sequencing. We show that this approach can provide accurate sequences of up to 10 kb, allowing us to identify rare mutations below the detection limit of conventional sequencing and directly link them into haplotypes. This barcoding methodology can be a powerful tool in sequencing heterogeneous populations such as viruses
    corecore