Abstract

<p>Abstract</p> <p>Background</p> <p>Studying contemporary hybridization increases our understanding of introgression, adaptation and, ultimately, speciation. The sister species <it>Ischnura elegans </it>and <it>I. graellsii </it>(Odonata: Coenagrionidae) are ecologically, morphologically and genetically similar and hybridize. Recently, <it>I. elegans </it>has colonized northern Spain, creating a broad sympatric region with <it>I. graellsii</it>. Here, we review the distribution of both species in Iberia and evaluate the degree of introgression of <it>I. graellsii </it>into <it>I. elegans </it>using six microsatellite markers (442 individuals from 26 populations) and five mitochondrial genes in sympatric and allopatric localities. Furthermore, we quantify the effect of hybridization on the frequencies of the genetically controlled colour polymorphism in females of both species.</p> <p>Results</p> <p>In a principal component analysis of the microsatellite data, the first two principal components summarised almost half (41%) of the total genetic variation. The first axis revealed a clear separation of <it>I. graellsii </it>and <it>I</it>. <it>elegans </it>populations, while the second axis separated <it>I. elegans </it>populations. Admixture analyses showed extensive hybridization and introgression in <it>I. elegans </it>populations, consistent with <it>I. elegans </it>backcrosses and occasional F<sub>1</sub>-hybrids, suggesting hybridization is on-going. More specifically, approximately 58% of the 166 Spanish <it>I. elegans </it>individuals were assigned to the <it>I. elegans </it>backcross category, whereas not a single of those individuals was assigned to the backcross with <it>I. graellsii</it>. The mitochondrial genes held little genetic variation, and the most common haplotype was shared by the two species.</p> <p>Conclusions</p> <p>The results suggest rapid species turnover in sympatric regions in favour of <it>I. elegans</it>, corroborating previous findings that <it>I. graellsii </it>suffers a mating disadvantage in sympatry with <it>I. elegans</it>. Examination of morph frequency dynamics indicates that hybridization is likely to have important implications for the maintenance of multiple female morphs, in particular during the initial period of hybridization.</p

    Similar works