116 research outputs found

    Exonic DNA Sequencing of ERBB4 in Bipolar Disorder

    Get PDF
    The Neuregulin-ErbB4 pathway plays a crucial role in brain development and constitutes one of the most biologically plausible signaling pathways implicated in schizophrenia and, to a lesser extent, in bipolar disorder (BP). However, recent genome-wide association analyses have not provided evidence for common variation in NRG1 or ERBB4 influencing schizophrenia or bipolar disorder susceptibility. In this study, we investigate the role of rare coding variants in ERBB4 in BP cases with mood-incongruent psychotic features, a form of BP with arguably the greatest phenotypic overlap with schizophrenia. We performed Sanger sequencing of all 28 exons in ERBB4, as well as part of the promoter and part of the 3′UTR sequence, hypothesizing that rare deleterious variants would be found in 188 cases with mood-incongruent psychosis from the GAIN BP study. We found 42 variants, of which 16 were novel, although none were non-synonymous or clearly deleterious. One of the novel variants, present in 11.2% of cases, is located next to an alternative stop codon, which is associated with a shortened transcript of ERBB4 that is not translated. We genotyped this variant in the GAIN BP case-control samples and found a marginally significant association with mood-incongruent psychotic BP compared with controls (additive model: OR = 1.64, P-value = 0.055; dominant model: OR = 1.73. P-value = 0.039). In conclusion, we found no rare variants of clear deleterious effect, but did uncover a modestly associated novel variant that could affect alternative splicing of ERBB4. However, the modest sample size in this study cannot definitively rule out a role for rare variants in bipolar disorder and studies with larger sample sizes are needed to confirm the observed association

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    Genome-Wide Association Study in Bipolar Patients Stratified by Co-Morbidity

    Get PDF
    Bipolar disorder is a severe psychiatric disorder with high heritability. Co-morbid conditions are common and might define latent subgroups of patients that are more homogeneous with respect to genetic risk factors.In the Caucasian GAIN bipolar disorder sample of 1000 cases and 1034 controls, we tested the association of single nucleotide polymorphisms with patient subgroups defined by co-morbidity.). All three associations were found under the recessive genetic model. Bipolar disorder with low probability of co-morbid conditions did not show significant associations.Conceptualizing bipolar disorder as a heterogeneous disorder with regard to co-morbid conditions might facilitate the identification of genetic risk alleles. Rare variants might contribute to the susceptibility to bipolar disorder

    Transcriptome-based polygenic score links depression-related corticolimbic gene expression changes to sex-specific brain morphology and depression risk

    Get PDF
    Studies in post-mortem human brain tissue have associated major depressive disorder (MDD) with cortical transcriptomic changes, whose potential in vivo impact remains unexplored. To address this translational gap, we recently developed a transcriptome-based polygenic risk score (T-PRS) based on common functional variants capturing ‘depression-like’ shifts in cortical gene expression. Here, we used a non-clinical sample of young adults (n = 482, Duke Neurogenetics Study: 53% women; aged 19.8 ± 1.2 years) to map T-PRS onto brain morphology measures, including Freesurfer-derived subcortical volume, cortical thickness, surface area, and local gyrification index, as well as broad MDD risk, indexed by self-reported family history of depression. We conducted side-by-side comparisons with a PRS independently derived from a Psychiatric Genomics Consortium (PGC) MDD GWAS (PGC-PRS), and sought to link T-PRS with diagnosis and symptom severity directly in PGC-MDD participants (n = 29,340, 59% women; 12,923 MDD cases, 16,417 controls). T-PRS was associated with smaller amygdala volume in women (t = −3.478, p = 0.001) and lower prefrontal gyrification across sexes. In men, T-PRS was associated with hypergyrification in temporal and occipital regions. Prefrontal hypogyrification mediated a male-specific indirect link between T-PRS and familial depression (b = 0.005, p = 0.029). PGC-PRS was similarly associated with lower amygdala volume and cortical gyrification; however, both effects were male-specific and hypogyrification emerged in distinct parietal and temporo-occipital regions, unassociated with familial depression. In PGC-MDD, T-PRS did not predict diagnosis (OR = 1.007, 95% CI = [0.997–1.018]) but correlated with symptom severity in men (rho = 0.175, p = 7.957 × 10−4) in one cohort (N = 762, 48% men). Depression-like shifts in cortical gene expression have sex-specific effects on brain morphology and may contribute to broad depression vulnerability in men

    Seasonal Distribution of Psychiatric Births in England

    Get PDF
    There is general consensus that season of birth influences the risk of developing psychiatric conditions later in life. We aimed to investigate whether the risk of schizophrenia (SC), bipolar affective disorder (BAD) and recurrent depressive disorder (RDD) is influenced by month of birth in England to a similar extent as other countries using the largest cohort of English patients collected to date (n=57,971). When cases were compared to the general English population (n=29,183,034) all diseases showed a seasonal distribution of births (SC p=2.48E-05; BAD p=0.019; RDD p=0.015). This data has implications for future strategies of disease prevention

    Lack of cortico-limbic coupling in bipolar disorder and schizophrenia during emotion regulation

    Get PDF
    Bipolar disorder (BD) and schizophrenia (Sz) share dysfunction in prefrontal inhibitory brain systems, yet exhibit distinct forms of affective disturbance. We aimed to distinguish these disorders on the basis of differential activation in cortico-limbic pathways during voluntary emotion regulation. Patients with DSM-IV diagnosed Sz (12) or BD-I (13) and 15 healthy control (HC) participants performed a well-established emotion regulation task while undergoing functional magnetic resonance imaging. The task required participants to voluntarily upregulate or downregulate their subjective affect while viewing emotionally negative images or maintain their affective response as a comparison condition. In BD, abnormal overactivity (hyperactivation) occurred in the right ventrolateral prefrontal cortex (VLPFC) during up- and downregulation of negative affect, relative to HC. Among Sz, prefrontal hypoactivation of the right VLPFC occurred during downregulation (opposite to BD), whereas upregulation elicited hyperactivity in the right VLPFC similar to BD. Amygdala activity was significantly related to subjective negative affect in HC and BD, but not Sz. Furthermore, amygdala activity was inversely coupled with the activity in the left PFC during downregulation in HC (r=−0.76), while such coupling did not occur in BD or Sz. These preliminary results indicate that differential cortico-limbic activation can distinguish the clinical groups in line with affective disturbance: BD is characterized by ineffective cortical control over limbic regions during emotion regulation, while Sz is characterized by an apparent failure to engage cortical (hypofrontality) and limbic regions during downregulation

    Genome-wide association for major depression through age at onset stratification

    Get PDF
    BACKGROUND: Major depressive disorder (MDD) is a disabling mood disorder, and despite a known heritable component, a large meta-analysis of genome-wide association studies revealed no replicable genetic risk variants. Given prior evidence of heterogeneity by age at onset in MDD, we tested whether genome-wide significant risk variants for MDD could be identified in cases subdivided by age at onset. METHODS: Discovery case-control genome-wide association studies were performed where cases were stratified using increasing/decreasing age-at-onset cutoffs; significant single nucleotide polymorphisms were tested in nine independent replication samples, giving a total sample of 22,158 cases and 133,749 control subjects for subsetting. Polygenic score analysis was used to examine whether differences in shared genetic risk exists between earlier and adult-onset MDD with commonly comorbid disorders of schizophrenia, bipolar disorder, Alzheimer’s disease, and coronary artery disease. RESULTS: We identified one replicated genome-wide significant locus associated with adult-onset (>27 years) MDD (rs7647854, odds ratio: 1.16, 95% confidence interval: 1.11–1.21, p = 5.2 × 10-11). Using polygenic score analyses, we show that earlier-onset MDD is genetically more similar to schizophrenia and bipolar disorder than adult-onset MDD. CONCLUSIONS: We demonstrate that using additional phenotype data previously collected by genetic studies to tackle phenotypic heterogeneity in MDD can successfully lead to the discovery of genetic risk factor despite reduced sample size. Furthermore, our results suggest that the genetic susceptibility to MDD differs between adult- and earlier-onset MDD, with earlier-onset cases having a greater genetic overlap with schizophrenia and bipolar disorder

    De novo single-nucleotide and copy number variation in discordant monozygotic twins reveals disease-related genes

    Get PDF
    Recent studies have demonstrated genetic differences between monozygotic (MZ) twins. To test the hypothesis that early post-twinning mutational events associate with phenotypic discordance, we investigated a cohort of 13 twin pairs (n = 26) discordant for various clinical phenotypes using whole-exome sequencing and screened for copy number variation (CNV). We identified a de novo variant in PLCB1, a gene involved in the hydrolysis of lipid phosphorus in milk from dairy cows, associated with lactase non-persistence, and a variant in the mitochondrial complex I gene MT-ND5 associated with amyotrophic lateral sclerosis (ALS). We also found somatic variants in multiple genes (TMEM225B, KBTBD3, TUBGCP4, TFIP11) in another MZ twin pair discordant for ALS. Based on the assumption that discordance between twins could be explained by a common variant with variable penetrance or expressivity, we screened the twin samples for known pathogenic variants that are shared and identified a rare deletion overlapping ARHGAP11B, in the twin pair manifesting with either schizotypal personality disorder or schizophrenia. Parent-offspring trio analysis was implemented for two twin pairs to assess potential association of variants of parental origin with susceptibility to disease. We identified a de novo variant in RASD2 shared by 8-year-old male twins with a suspected diagnosis of autism spectrum disorder (ASD) manifesting as different traits. A de novo CNV duplication was also identified in these twins overlapping CD38, a gene previously implicated in ASD. In twins discordant for Tourette's syndrome, a paternally inherited stop loss variant was detected in AADAC, a known candidate gene for the disorder

    Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder

    Get PDF
    Bipolar disorder (BD) is a serious mental illness with substantial common variant heritability. However, the role of rare coding variation in BD is not well established. We examined the protein-coding (exonic) sequences of 3,987 unrelated individuals with BD and 5,322 controls of predominantly European ancestry across four cohorts from the Bipolar Sequencing Consortium (BSC). We assessed the burden of rare, protein-altering, single nucleotide variants classified as pathogenic or likely pathogenic (P-LP) both exome-wide and within several groups of genes with phenotypic or biologic plausibility in BD. While we observed an increased burden of rare coding P-LP variants within 165 genes identified as BD GWAS regions in 3,987 BD cases (meta-analysis OR = 1.9, 95% CI = 1.3-2.8, one-sided p = 6.0 × 10-4), this enrichment did not replicate in an additional 9,929 BD cases and 14,018 controls (OR = 0.9, one-side p = 0.70). Although BD shares common variant heritability with schizophrenia, in the BSC sample we did not observe a significant enrichment of P-LP variants in SCZ GWAS genes, in two classes of neuronal synaptic genes (RBFOX2 and FMRP) associated with SCZ or in loss-of-function intolerant genes. In this study, the largest analysis of exonic variation in BD, individuals with BD do not carry a replicable enrichment of rare P-LP variants across the exome or in any of several groups of genes with biologic plausibility. Moreover, despite a strong shared susceptibility between BD and SCZ through common genetic variation, we do not observe an association between BD risk and rare P-LP coding variants in genes known to modulate risk for SCZ
    • …
    corecore