41 research outputs found

    Not Available

    No full text
    Not AvailableThis study was conducted to determine the relationship between rectal temperature (TREC) and rumen temperature (TRUM) and to assess if TRUM could be used as a proxy measure of core body temperature (TCORE) in feedlot cattle. Eighty Angus steers (388.8 ± 2.1 kg) were orally administered with rumen temperature boluses. Rumen temperatures were recorded at 10-min intervals over 128 days from all 80 steers. To define the suitability of TRUM as an estimation of TCORE, TREC were obtained from all steers at 7-day intervals (n = 16). Eight feedlot pens were used where there were 10 steers per pen (162 m2). Shade was available in each pen (1.8 m2/animal; 90% solar block). Climatic data were recorded at 30-min intervals, including ambient temperature (TA; °C); relative humidity (RH; %); wind speed (WS; m/s) and direction; solar radiation (SR; W/m2); and black globe temperature (BGT; °C). Rainfall (mm) was recorded daily at 0900 h. From these data, temperature humidity index (THI), heat load index (HLI) and accumulated heat load (AHL) were calculated. Individual 10-min TRUM data were converted to an individual hourly average. Pooled mean hourly TRUM data from the 128-day data were used to establish the diurnal rhythm of TRUM where the mean minimum (39.19 ± 0.01 °C) and mean maximum (40.04 ± 0.01 °C) were observed at 0800 h and 2000 h respectively. A partial correlation coefficient indicated that there were moderate to strong relationships between TRUM and TREC using both real-time (r = 0.55; P < 0.001) and hourly mean (r = 0.51; P < 0.001) TRUM data. The mean difference between TREC and TRUM was small using both real-time (0.16 ± 0.02 °C) and hourly mean TRUM (0.13 ± 0.02 °C) data. Data from this study supports the hypothesis that TRUM can be used as an estimate of TCORE, suggesting that TRUM can be used to measure and quantify heat load in feedlot cattle.Not Availabl

    Boundary condition control of fluvial obstacle mark formation – framework from a geoscientific perspective

    No full text
    Obstacle marks are sedimentary bedforms, typically composed of an upstream local scour hole and a downstream sediment accumulation in the vicinity of an obstruction that is exposed to a current. However, specific morphologies are variable in fluvial, coastal and submarine environments. Although obstacle marks and the phenomenon of local scouring are subject to different scientific disciplines, the objectives of investigations are rather incoherent and no systematic framework for analysing and evaluating boundary condition control exists yet, especially concerning limited knowledge of the cause and effect relationship of obstacle mark formation at instream boulders or vegetation elements in variable environmental conditions. Thus, a parameter framework is developed which identifies a spectrum of extrinsic and intrinsic boundary conditions that control the major process dynamics of obstacle mark formation. The framework is composed of dimensionless control parameters that are separated by a hierarchical order regarding their significance for obstacle mark formation. Primary control parameters determine the geometrical scale of flow field at the obstacle, and therefore control the potential maximum size of the obstacle. Secondary control parameters affect the dynamics of the flow field in geometrical scale and limit the potential maximum size of the emerging sedimentary structure if thresholds are crossed. The framework is supposed to be a foundation for subsequent quantification and determination of thresholds by systematic laboratory studies. To elucidate this, flume-based research is presented, evaluating the influence of different flow levels at boulder-like obstacles of different shapes. The results show that obstacle mark dimensions were maximized at shallow flow depths compared to obstacle dimensions, while deep flows at submerged boulder-like obstructions caused considerably smaller obstacle marks. In interdependency with a rounded and more streamlined obstacle shape, deep flows even cause a deviation of morphology if the flow depth above an obstacle exceeds 1.6 times the obstacle's dimensions. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd
    corecore