35 research outputs found

    Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study

    Get PDF
    Background: The impact of long term residence on high altitude (HA) on human brain has raised concern among researchers in recent years. This study investigated the cerebrovascular reactivity among native-born high altitude (HA) residents as compared to native sea level (SL) residents. The two groups were matched on the ancestral line, ages, gender ratios, and education levels. A visual cue guided maximum inspiration task with brief breath holding was performed by all the subjects while Blood-Oxygenation-Level-Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) data were acquired from them

    Bayesian Comparison of Neurovascular Coupling Models Using EEG-fMRI

    Get PDF
    Functional magnetic resonance imaging (fMRI), with blood oxygenation level-dependent (BOLD) contrast, is a widely used technique for studying the human brain. However, it is an indirect measure of underlying neuronal activity and the processes that link this activity to BOLD signals are still a topic of much debate. In order to relate findings from fMRI research to other measures of neuronal activity it is vital to understand the underlying neurovascular coupling mechanism. Currently, there is no consensus on the relative roles of synaptic and spiking activity in the generation of the BOLD response. Here we designed a modelling framework to investigate different neurovascular coupling mechanisms. We use Electroencephalographic (EEG) and fMRI data from a visual stimulation task together with biophysically informed mathematical models describing how neuronal activity generates the BOLD signals. These models allow us to non-invasively infer the degree of local synaptic and spiking activity in the healthy human brain. In addition, we use Bayesian model comparison to decide between neurovascular coupling mechanisms. We show that the BOLD signal is dependent upon both the synaptic and spiking activity but that the relative contributions of these two inputs are dependent upon the underlying neuronal firing rate. When the underlying neuronal firing is low then the BOLD response is best explained by synaptic activity. However, when the neuronal firing rate is high then both synaptic and spiking activity are required to explain the BOLD signal

    The effects of electrical microstimulation on cortical signal propagation

    No full text
    Electrical stimulation has been used in animals and humans to study potential causal links between neural activity and specific cognitive functions. Recently, it has found increasing use in electrotherapy and neural prostheses. However, the manner in which electrical stimulation–elicited signals propagate in brain tissues remains unclear. We used combined electrostimulation, neurophysiology, microinjection and functional magnetic resonance imaging (fMRI) to study the cortical activity patterns elicited during stimulation of cortical afferents in monkeys. We found that stimulation of a site in the lateral geniculate nucleus (LGN) increased the fMRI signal in the regions of primary visual cortex (V1) that received input from that site, but suppressed it in the retinotopically matched regions of extrastriate cortex. Consistent with previous observations, intracranial recordings indicated that a short excitatory response occurring immediately after a stimulation pulse was followed by a long-lasting inhibition. Following microinjections of GABA antagonists in V1, LGN stimulation induced positive fMRI signals in all of the cortical areas. Taken together, our findings suggest that electrical stimulation disrupts cortico-cortical signal propagation by silencing the output of any neocortical area whose afferents are electrically stimulated

    Pharmaco-Based fMRI and Neurophysiology in Non-human Primates

    No full text
    Brain activity is continuously changing, among others reflecting the effects of neuromodulation on multiple spatial and temporal scales. By altering the input–output relationship of neural circuits, neuromodulators can also affect their energy expenditure, with concomitant effects on the hemodynamic responses. Yet, it is still unclear how to study and interpret the effects of different neuromodulators, for instance, how to differentiate their effects from underlying behavior- or stimulus-driven activity. Gaining insights into neuromodulatory processes is largely hampered by the lack of approaches providing information concurrently at different spatio-temporal scales. Here, we provide an overview of the multimodal approach consisting of functional magnetic resonance imaging (fMRI), pharmacology and neurophysiology, which we developed to elucidate causal relationships between neuromodulation and neurovascular coupling in visual cortex of anesthetized macaques

    The Electrophysiological Background of the fMRI Signal

    No full text
    The ability to non-invasively study the architecture and function of the human brain constitutes one of the most exciting cornerstones for modern medicine, psychology and neuroscience. Current in vivo imaging techniques not only provide clinically essential information and allow new forms of treatment, but also reveal insights into the mechanisms behind brain function and malfunction. This supremacy of modern imaging rests on its ability to study the structural properties of the nervous system simultaneously with the functional changes related to neuronal activity. As a result, imaging allows us to combine information about the spatial organization and connectivity of the nervous system with information about the underlying neuronal processes and provides the only means to link perception and cognition with the neural substrates in the human brain
    corecore