138 research outputs found
Improving adherence to surveillance and screening recommendations for people with colorectal cancer and their first degree relatives: a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Colorectal cancer (CRC) is among the leading causes of cancer-related morbidity and mortality worldwide. Despite clinical practice guidelines to guide surveillance care for those who have completed treatment for this disease as well as screening for first degree relatives of people with CRC, the level of uptake of these recommendations remains uncertain. If outcomes for both patients and their families are to be improved, it is important to establish systematic and cost-effective interventions to improve adherence to guideline recommendations for CRC surveillance and screening.</p> <p>Methods/Design</p> <p>A randomized controlled trial will be used to test the effectiveness of a print-based intervention to improve adherence to colonoscopy surveillance among people with CRC and adherence to CRC screening recommendations among their first degree relatives (FDRs). People diagnosed with CRC in the past 10 months will be recruited through a population-based cancer registry. Consenting participants will be asked if their first degree relatives might also be willing to participate in the trial. Information on family history of CRC will be obtained from patients at baseline. Patients and their families will be randomized to either minimal ethical care or the print-based intervention. The print-based intervention for FDRs will be tailored to the participant's level of risk of CRC as determined by the self-reported family history assessment. Follow up data on surveillance and screening participation will be collected from patients and their FDRs respectively at 12, 24 and 36 months' post recruitment. The primary analyses will relate to comparing levels of guideline adherence in usual care group versus print-based group in the patient sample and the FDR sample respectively.</p> <p>Discussion</p> <p>Results of this study will provide contribute to the evidence base about effective strategies to a) improve adherence to surveillance recommendation for people with CRC; and b) improve adherence to screening recommendation for FDRs of people with CRC. The use of a population-based cancer registry to access the target population may have significant advantages in increasing the reach of the intervention.</p> <p>Trial registration</p> <p>This trial is registered with the Australian and New Zealand Clinical Trials Registry Registration Number (ACTRN): <a href="http://www.anzctr.org.au/ACTRN12609000628246">ACTRN12609000628246</a>.</p
Structure of hadron resonances with a nearby zero of the amplitude
We discuss the relation between the analytic structure of the scattering
amplitude and the origin of an eigenstate represented by a pole of the
amplitude.If the eigenstate is not dynamically generated by the interaction in
the channel of interest, the residue of the pole vanishes in the zero coupling
limit. Based on the topological nature of the phase of the scattering
amplitude, we show that the pole must encounter with the
Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the
dynamical component of the eigenstate is small if a CDD zero exists near the
eigenstate pole. We show that the line shape of the resonance is distorted from
the Breit-Wigner form as an observable consequence of the nearby CDD zero.
Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma
amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio
Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels
Voltage-gated Ca2+ channels couple membrane depolarization to Ca2+-dependent intracellular signaling events. This is achieved by mediating Ca2+ ion influx or by direct conformational coupling to intracellular Ca2+ release channels. The family of Cav1 channels, also termed L-type Ca2+ channels (LTCCs), is uniquely sensitive to organic Ca2+ channel blockers and expressed in many electrically excitable tissues. In this review, we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within their pore-forming α1 subunits causing hypokalemic periodic paralysis and malignant hyperthermia sensitivity (Cav1.1 α1), incomplete congenital stationary night blindness (CSNB2; Cav1.4 α1), and Timothy syndrome (Cav1.2 α1; reviewed separately in this issue). Cav1.3 α1 mutations have not been reported yet in humans, but channel loss of function would likely affect sinoatrial node function and hearing. Studies in mice revealed that LTCCs indirectly also contribute to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Cav2.1 α1 in tottering mice. Ca2+ channelopathies provide exciting disease-related molecular detail that led to important novel insight not only into disease pathophysiology but also to mechanisms of channel function
Effects of Endolithic Parasitism on Invasive and Indigenous Mussels in a Variable Physical Environment
Biotic stress may operate in concert with physical environmental conditions to limit or facilitate invasion processes while altering competitive interactions between invaders and native species. Here, we examine how endolithic parasitism of an invasive and an indigenous mussel species acts in synergy with abiotic conditions of the habitat. Our results show that the invasive Mytilus galloprovincialis is more infested than the native Perna perna and this difference is probably due to the greater thickness of the protective outer-layer of the shell of the indigenous species. Higher abrasion due to waves on the open coast could account for dissimilarities in degree of infestation between bays and the more wave-exposed open coast. Also micro-scale variations of light affected the level of endolithic parasitism, which was more intense at non-shaded sites. The higher levels of endolithic parasitism in Mytilus mirrored greater mortality rates attributed to parasitism in this species. Condition index, attachment strength and shell strength of both species were negatively affected by the parasites suggesting an energy trade-off between the need to repair the damaged shell and the other physiological parameters. We suggest that, because it has a lower attachment strength and a thinner shell, the invasiveness of M. galloprovincialis will be limited at sun and wave exposed locations where endolithic activity, shell scouring and risk of dislodgement are high. These results underline the crucial role of physical environment in regulating biotic stress, and how these physical-biological interactions may explain site-to-site variability of competitive balances between invasive and indigenous species
Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay
published_or_final_versio
Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment
published_or_final_versio
Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment
published_or_final_versio
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
published_or_final_versio
Diving into the vertical dimension of elasmobranch movement ecology
This is the final version. Available on open access from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: Processed data and code used in the analysis are accessible from the Zenodo Repository: 10.5281/zenodo.6885455Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.Bertarelli FoundationResearch EnglandMoore FoundationPackard FoundationInstituto Politecnico NacionalDarwin InitiativeGeorgia AquariumRolex Awards for EnterpriseWhitley Fund for Natur
- …