2,908 research outputs found

    Performance of a demand controlled mechanical extract ventilation system for dwellings

    Get PDF
    The main aim of ventilation is to guarantee a goodindoor air quality, related to the energy consumed forheating and fan(s). Active or passive heat recoverysystems seem to focus on the reduction of heatingconsumption at the expense of fan electricityconsumption and maintenance. In this study, demandcontrolledmechanical extract ventilation systems ofRenson (DCV1 and DCV2), based on natural supply inthe habitable rooms and mechanical extraction in thewet rooms (or even the bedrooms), was analysed forone year by means of multi-zone Contam simulationson a reference detached house and compared withstandard MEV and mechanical extract ventilationsystems with heat recovery (MVHR). To this end, IAQ, total energy consumption,CO2 emissions and total cost of the systems aredetermined. The results show that DCV systems withincreased supply air flow rates or direct mechanicalextract from bedrooms can significantly improve IAQ,while reducing total energy consumption comparedto MEV. Applying DCV reduces primary heatingenergy consumption and yearly fan electricityconsumption at most by 65% to 50% compared toMEV. Total operational energy costs and CO2emissions of DCV are similar when compared toMVHR. Total costs of DCV systems over 15 years aresmaller when compared to MVHR due to lowerinvestment and maintenance costs

    A new spatially and temporally variable sigma parameter in degree-day melt modelling of the Greenland Ice Sheet 1870–2013

    Get PDF
    The degree-day based method of calculating ice-/snow-melt across the Greenland Ice Sheet (GrIS) commonly includes the temperature parameter sigma (σ) accounting for temperature variability on short (sub-monthly down to hourly) timescales, in order to capture melt in months where the mean temperature is below 0 °C. Sigma is typically assumed to be constant in space and time, with values ranging from ~ 2.5 to 5.5 °C. It is unclear in many cases how these values were derived and little sensitivity analysis or validation has been conducted. Here we determine spatially and temporally varying monthly values of σ for the unique, extended 1870–2013 timescale based on downscaled, corrected European Centre for Medium-Range Weather Forecasts (ECMWF) Interim (ERA-I) and Twentieth Century Reanalysis (20CR) meteorological reanalysis 2 m air temperatures on a 5 km × 5 km polar stereographic grid for the GrIS. The resulting monthly σ values reveal a distinct seasonal cycle. The mean summer σ value for the study period is ~ 3.2 °C, around 1 °C lower than the value of 4.2 °C commonly used in the literature. Sigma values for individual summers range from 1.7 to 5.9 °C. Since the summer months dominate the melt calculation, use of the new variable σ parameter would lead to a smaller melt area and a more positive surface mass balance for the GrIS. Validation of our new variable σ dataset shows good agreement with standard deviations calculated from automatic weather station observations across the ice sheet. Trend analysis shows large areas of the ice sheet exhibit statistically significant increasing temperature variability from 1870–2013 in all seasons, with notable exceptions around Summit in spring, and Summit and South Dome in winter. More recently, since 1990, σ has been decreasing, significantly so in the north-west during July. These interannual σ trends reflect climate change and variability processes operating across the ice sheet, several mechanisms of which are briefly discussed

    Needle age-related and seasonal photosynthetic capacity variation is negligible for modelling yearly gas exchange of a sparse temperate Scots pine forest

    Get PDF
    In this study, we quantified the predictive accuracy loss involved with omitting photosynthetic capacity variation for a Scots pine (<i>Pinus sylvestris</i> L.) stand in Flanders, Belgium. Over the course of one phenological year, we measured the maximum carboxylation capacity at 25 &deg;C (<i>V</i><sub>m25</sub>), the maximum electron transport capacity at 25 &deg;C (<i>J</i><sub>m25</sub>), and the leaf area index (LAI) of different-aged needle cohorts in the upper and lower canopy. We used these measurements as input for a process-based multi-layer canopy model with the objective to quantify the difference in yearly gross ecosystem productivity (GEP) and canopy transpiration (<i>E</i><sub>can</sub>) simulated under scenarios in which the observed needle age-related and/or seasonal variation of <i>V</i><sub>m25</sub> and <i>J</i><sub>m25</sub> was omitted. We compared simulated GEP with estimations obtained from eddy covariance measurements. Additionally, we measured summer needle N content to investigate the relationship between photosynthetic capacity parameters and needle N content along different needle ages. <br><br> Results show that <i>V</i><sub>m25</sub> and <i>J</i><sub>m25</sub> were, respectively, 27% and 13% higher in current-year than in one-year old needles. A significant seasonality effect was found on <i>V</i><sub>m25</sub>, but not on <i>J</i><sub>m25</sub>. Summer needle N content was considerably lower in current-year than in one-year-old needles. As a result, the correlations between <i>V</i><sub>m25</sub> and needle N content and <i>J</i><sub>m25</sub> and needle N content were negative and non-significant, respectively. Some explanations for these unexpected correlations were brought forward. Yearly GEP was overestimated by the canopy model by &plusmn;15% under all scenarios. The inclusion and omission of the observed needle age-related <i>V</i><sub>m25</sub> and <i>J</i><sub>m25</sub> variation in the model simulations led to statistically significant but ecologically irrelevant differences in simulated yearly GEP and <i>E</i><sub>can</sub>. Omitting seasonal variation did not yield significant simulation differences. Our results indicate that intensive photosynthetic capacity measurements over the full growing season and separate simulation of needle age classes were no prerequisites for accurate simulations of yearly canopy gas exchange. This is true, at least, for the studied stand, which has a very sparse canopy and is exposed to high N deposition and, hence, is not fully representative for temperate Scots pine stands. Nevertheless, we believe well-parameterized process-based canopy models – as applied in this study – are a useful tool to quantify losses of predictive accuracy involved with canopy simplification in modelling

    Radiocarbon dating reveals different past managements of adjacent forest soils in the Campine region, Belgium

    Get PDF
    The soils of adjacent first generation monospecific stands of Scots pine (Pinus sylvestris L.) and pedunculate oak (Quercus robur L.) in the Campine region, Belgium, apparently developed under the same forming factors, were studied for carbon dynamics to disentangle eventual different past land uses. In fact, visual observations suggested that the soil under pine experienced substantial addition of organic matter and ploughing, such to be considered a plaggen, opposite to the soil under oak, which is inexplicably much poorer in C. In order to prove this hypothesis, the soil organic carbon was quantified by horizons and, both bulk soil organic matter (SOM) and the least mobile SOM fractions - the humic acid and the unextractable fractions - were radiocarbon dated. Surprising was the marked difference between the mean SOM age from the two stands. In fact, while under oak this age is a few years or decades, under pine it amounts to more than a millennium, so confirming the hypothesis of a confined C supply occurred mainly in the Middle Age, or later using partly humified matter. The mean residence time (MRT) of SOM in the organic layers matches almost perfectly with that estimated via a mass balance approach and, as expected, was much lower in the oaks than in the pines. The humic acid fraction, generally the most stable fraction of SOM, in terms of both mobility and degradability, reflects the behaviour of the bulk SOM, showing higher radiocarbon ages under pine. The findings of this work indicate that the large human-induced additions of organic material in the area now occupied by the pine stand, probably occurred in the Middle Age and it continues to strongly affect the present soil C pools and their dynamics. Any study dealing with budgets and dynamics of C in soil should avail itself of a careful reconstruction of the land uses and management history, in order to provide reliable conclusions about the real role of the current vegetation on soil carbon. Crown Copyright (c) 2008 Published by Elsevier B.V. All rights reserved

    Ecosystem services

    Full text link
    editorial reviewedThe concept of ecosystem services links the conservation of biodiversity and human development. This concept is central to the Man and the Biosphere (MAB) Programme, which aims to combine conservation of ecosystems and sustainable development through the zonation of biosphere reserves and other approaches. Biosphere reserves are excellent learning sites to study the interactions between people and nature, especially how people benefit from nature (ecosystem services), stakeholders’ perceptions and use of nature, important anthropogenic pressures, etc. The concept of ecosystem services helps to structure and study all of these interactions

    Probing the single-particle character of rotational states in 19^{19}F using a short-lived isomeric beam

    Get PDF
    A beam containing a substantial component of both the JÏ€=5+J^{\pi}=5^+, T1/2=162T_{1/2}=162 ns isomeric state of 18^{18}F and its 1+1^+, 109.77-min ground state has been utilized to study members of the ground-state rotational band in 19^{19}F through the neutron transfer reaction (d(d,p)p) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13/2+^+ band-terminating state. The agreement between shell-model calculations, using an interaction constructed within the sdsd shell, and our experimental results reinforces the idea of a single-particle/collective duality in the descriptions of the structure of atomic nuclei

    Decay modes of 250No

    Full text link
    The Fragment Mass Analyzer at the ATLAS facility has been used to unambiguously identify the mass number associated with different decay modes of the nobelium isotopes produced via 204Pb(48Ca,xn)(252-x)No reactions. Isotopically pure (>99.7%) 204Pb targets were used to reduce background from more favored reactions on heavier lead isotopes. Two spontaneous fission half-lives (t_1/2 = 3.7+1.1-0.8 us and 43+22-15 us) were deduced from a total of 158 fission events. Both decays originate from 250No rather than from neighboring isotopes as previously suggested. The longer activity most likely corresponds to a K-isomer in this nucleus. No conclusive evidence for an alpha branch was observed, resulting in upper limits of 2.1% for the shorter lifetime and 3.4% for the longer activity.Comment: RevTex4, 10 pages, 5 figures, submitted to PR

    Proton arc therapy increases the benefit of proton therapy for oropharyngeal cancer patients in the model based clinic

    Get PDF
    Background and purpose: In the model-based approach, patients qualify for proton therapy when the reduction in risk of toxicity (ΔNTCP) obtained with IMPT relative to VMAT is larger than predefined thresholds as defined by the Dutch National Indication Protocol (NIPP). Proton arc therapy (PAT) is an emerging technology which has the potential to further decrease NTCPs compared to IMPT. The aim of this study was to investigate the potential impact of PAT on the number of oropharyngeal cancer (OPC) patients that qualify for proton therapy.Materials and methods: A prospective cohort of 223 OPC patients subjected to the model-based selection procedure was investigated. 33 (15%) patients were considered unsuitable for proton treatment before plan comparison. When IMPT was compared to VMAT for the remaining 190 patients, 148 (66%) patients qualified for protons and 42 (19%) patients did not. For these 42 patients treated with VMAT, robust PAT plans were generated.Results: PAT plans provided better or similar target coverage compared to IMPT plans. In the PAT plans, integral dose was significantly reduced by 18% relative to IMPT plans and by 54% relative to VMAT plans. PAT decreased the mean dose to numerous organs-at-risk (OARs), further reducing NTCPs. The ΔNTCP for PAT relative to VMAT passed the NIPP thresholds for 32 out of the 42 patients treated with VMAT, resulting in 180 patients (81%) of the complete cohort qualifying for protons.Conclusion: PAT outperforms IMPT and VMAT, leading to a further reduction of NTCP-values and higher ΔNTCP-values, significantly increasing the percentage of OPC patients selected for proton therapy.</p

    ΔI=4\Delta I=4 and ΔI=8\Delta I=8 bifurcations in rotational bands of diatomic molecules

    Full text link
    It is shown that the recently observed ΔI=4\Delta I=4 bifurcation seen in superdeformed nuclear bands is also occurring in rotational bands of diatomic molecules. In addition, signs of a ΔI=8\Delta I=8 bifurcation, of the same order of magnitude as the ΔI=4\Delta I=4 one, are observed both in superdeformed nuclear bands and rotational bands of diatomic molecules.Comment: LaTex twice, 10 pages and 5 PS figures provided upon demand by the Author
    • …
    corecore