36 research outputs found

    Effect of Galactose Ingestion Before and During Exercise on Substrate Oxidation, Postexercise Satiety, and Subsequent Energy Intake in Females.

    Get PDF
    OBJECTIVE: To examine the effects of consuming a galactose carbohydrate (CHO) drink on substrate oxidation, postexercise satiety, and subsequent energy intake. METHODS: Nine recreationally active eumenorrheic females undertook 3 trials, each consisting of running for 60 minutes at 65% VO2peak followed immediately by a 90-minute rest period. Prior to (300 ml) and at 15-minute intervals during exercise (150 ml), participants consumed either a glucose (GLU: GI 89) or galactose (GAL: GI 20) drink, each of which contained 45 g of CHO, or an artificially sweetened placebo (PLA). Following the rest period, participants were provided with an ad libitum test lunch and asked to record food intake for the remainder of the day. RESULTS: Plasma glucose was significantly greater throughout exercise and rest following the GLU trial compared with the GAL and PLA trials (P < 0.05); however there were no differences in CHO oxidation. Hunger was significantly lower (P < 0.05) throughout the GAL compared to the GLU and PLA trials. There were no significant differences between trials for energy intake during the postexercise meal. Overall net energy balance for the 24 hours was negative in both the GAL (-162 ± 115 kcal; P < 0.05 vs GLU) and PLA trials (-49 ± 160 kcal). CONCLUSIONS: Results demonstrate that ingesting a solution containing GAL before and during exercise can positively impact postexercise satiety and energy balance throughout the day, compared to a more readily available and widely consumed form of CHO. Despite this, there appears to be no apparent benefit in consuming a CHO beverage on fuel utilization for this moderate exercise intensity and duration

    Observation of Coherent Elastic Neutrino-Nucleus Scattering

    Full text link
    The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset

    Objective and Self-Rated Sedentary Time and Indicators of Metabolic Health in Dutch and Hungarian 10–12 Year Olds: The ENERGY-Project

    Get PDF
    Background: The association between objectively assessed sedentary time and metabolic risk factors in childhood have rarely been studied. Therefore, we examined the independent relationship between objectively assessed and self-rated sedentary time and indicators of metabolic health in Dutch and Hungarian 10–12 year olds. Methodology/Principal Findings: We performed a cross-sectional survey in primary schools. Participants were Dutch and Hungarian girls (n = 73, aged 12.260.6 years, 18 % overweight/obese) and boys (n = 69, aged 12.260.7 years, 38% overweight/obese). Sedentary time and physical activity were assessed by the Actigraph accelerometer. TV and PC time were assessed by self-report. Adiposity indicators included body weight, height, and waist circumference (WC). Fasting plasma glucose, C-peptide, total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol, and triglycerides were determined in capillary blood and summed into a metabolic risk score. Linear regression analyses were adjusted for physical activity, number of sedentary bouts and WC. Children spent on average 7.6 hours of their daily waking time in sedentary behavior and self-reported 116664 min/day watching TV and 85657 min/day using the computer. Comparing the 1 st and 4 th quartile of objectively assessed sedentary time, C-Peptide levels, WC and BMI were significantly higher in the most sedentary quartile, while the difference in metabolic risk score was borderline significant (p = 0.09). Comparing the 1 st and 4 th quartile of TV time, BMI was significantly higher in the most sedentary quartile, while th

    At the bottom of the differential diagnosis list: unusual causes of pediatric hypertension

    Get PDF
    Hypertension affects 1–5% of children and adolescents, and the incidence has been increasing in association with obesity. However, secondary causes of hypertension such as renal parenchymal diseases, congenital abnormalities and renovascular disorders still remain the leading cause of pediatric hypertension, particularly in children under 12 years old. Other less common causes of hypertension in children and adolescents, including immobilization, burns, illicit and prescription drugs, dietary supplements, genetic disorders, and tumors will be addressed in this review

    Local application of a gentamicin-loaded thermo-responsive hydrogel allows for fracture healing upon clearance of a high Staphylococcus aureus load in a rabbit model

    Get PDF
    ntibiotic-loaded biomaterials (ALBs) have emerged as a potential useful adjunctive antimicrobial measure for the prevention of infection in open fracture care. A biodegradable thermo-responsive poly(N-isopropylacrylamide) grafted hyaluronic acid (HApN) hydrogel loaded with gentamicin has recently been shown to prevent implant-related infection in a rabbit osteosynthesis model. The primary aim of this study was to determine the influence of this HApN hydrogel on bone healing at an early stage (4 weeks). A rabbit humeral osteotomy model with plating osteosynthesis was used to compare fracture healing in rabbits receiving the hydrogel as compared with control animals. The secondary aim was to observe fracture healing in groups treated with and without antibiotic-loaded hydrogel in the presence of bacterial contamination. In all groups, outcome measures were mechanical stability and histological score, with additional quantitative bacteriology in the inoculated groups. Application of the HApN hydrogel in non-inoculated rabbits did not significantly influence humeral stiffness or histological scores for fracture healing in comparison to controls. In the inoculated groups, animals receiving the bacterial inoculum without hydrogel were culture-positive at euthanasia and found to display lower humeral stiffness values and higher histopathological scores for bacterial presence in comparison with equivalents receiving the gentamicin-loaded HApN hydrogel, which were also infection-free. In summary, our data showed that HApN was an effective antibiotic carrier that did not affect fracture healing. This data supported its suitability for application in fracture care. Addition of osteopromotive compounds could provide further support for accelerating fracture healing in addition to successful infection prophylaxis

    Effect of hydrogen peroxide on rabbit urinary bladder citrate synthase activity in the presence and absence of a grape suspension

    No full text
    PURPOSE: The etiology of obstructive bladder dysfunction includes free radical damage to mitochondria. Feeding rabbits a standardized grape suspension protects the ability of the bladder to contract and empty in part by preventing mitochondrial damage, thus maintaining smooth muscle and mucosal metabolism. The objective of the current study is to determine the direct effect of this grape suspension on the response of mitochondria to the oxidative effects of hydrogen peroxide. MATERIALS AND METHODS: Six male rabbits were anesthetized with sodium pentobarbital and the bladders excised. Four full thickness strips were obtained for contractile studies and the balance separated into smooth muscle and mucosa compartments by blunt dissection. The effect of hydrogen peroxide on the contractile response to field stimulation was quantitated. Each tissue was homogenized and the effects of increasing concentrations of hydrogen peroxide in the presence and absence of grape suspension on citrate synthase activity was determined. RESULTS: Citrate synthase activity was significantly higher in the mucosa than in the muscle. The grape suspension had no effect on control citrate synthase activity. However, the grape suspension provided significant protection of both smooth muscle and mucosal citrate synthase activity. CONCLUSIONS: These studies support the conclusion that the grape suspension provides direct protection of mitochondrial function

    Identification of hemostatic genes expressed in human and rat leg muscles and a novel gene (LPP1/PAP2A) suppressed during prolonged physical inactivity (sitting)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Partly because of functional genomics, there has been a major paradigm shift from solely thinking of skeletal muscle as contractile machinery to an understanding that it can have roles in paracrine and endocrine functions. Physical inactivity is an established risk factor for some blood clotting disorders. The effects of inactivity during sitting are most alarming when a person develops the enigmatic condition in the legs called deep venous thrombosis (DVT) or “coach syndrome,” caused in part by muscular inactivity. The goal of this study was to determine if skeletal muscle expresses genes with roles in hemostasis and if their expression level was responsive to muscular inactivity such as occurs in prolonged sitting.</p> <p>Methods</p> <p>Microarray analyses were performed on skeletal muscle samples from rats and humans to identify genes associated with hemostatic function that were significantly expressed above background based on multiple probe sets with perfect and mismatch sequences. Furthermore, we determined if any of these genes were responsive to models of physical inactivity. Multiple criteria were used to determine differential expression including significant expression above background, fold change, and non-parametric statistical tests.</p> <p>Results</p> <p>These studies demonstrate skeletal muscle tissue expresses at least 17 genes involved in hemostasis. These include the fibrinolytic factors tetranectin, annexin A2, and tPA; the anti-coagulant factors TFPI, protein C receptor, PAF acetylhydrolase; coagulation factors, and genes necessary for the posttranslational modification of these coagulation factors such as vitamin K epoxide reductase. Of special interest, lipid phosphate phosphatase-1 (LPP1/PAP2A), a key gene for degrading prothrombotic and proinflammatory lysophospholipids, was suppressed locally in muscle tissue within hours after sitting in humans; this was also observed after acute and chronic physical inactivity conditions in rats, and exercise was relatively ineffective at counteracting this effect in both species.</p> <p>Conclusions</p> <p>These findings suggest that skeletal muscle may play an important role in hemostasis and that muscular inactivity may contribute to hemostatic disorders not only because of the slowing of blood flow per se, but also potentially because of the contribution from genes expressed locally in muscles, such as LPP1.</p
    corecore