19 research outputs found

    Water Use, Leaf Cooling and Carbon Assimilation Efficiency of Heat Resistant Common Beans Evaluated in Western Amazonia

    Get PDF
    In our study, we analyzed 30years of climatological data revealing the bean production risks for Western Amazonia. Climatological profiling showed high daytime and nighttime temperatures combined with high relative humidity and low vapor pressure deficit. Our understanding of the target environment allows us to select trait combinations for reaching higher yields in Amazonian acid soils. Our research was conducted using 64 bean lines with different genetic backgrounds. In high temperatures, we identified three water use efficiency typologies in beans based on detailed data analysis on gasometric exchange. Profligate water spenders and not water conservative accessions showed leaf cooling, and effective photosynthate partitioning to seeds, and these attributes were found to be related to higher photosynthetic efficiency. Thus, water spenders and not savers were recognized as heat resistant in acid soil conditions in Western Amazonia. Genotypes such as BFS 10, SEN 52, SER 323, different SEFs (SEF 73, SEF 10, SEF 40, SEF 70), SCR 56, SMR 173, and SMN 99 presented less negative effects of heat stress on yield. These genotypes could be suitable as parental lines for improving dry seed production. The improved knowledge on water-use efficiency typologies can be used for bean crop improvement efforts as well as further studies aimed at a better understanding of the intrinsic mechanisms of heat resistance in legumes

    Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-fMRI

    Get PDF
    Current computational accounts posit that, in simple binary choices, humans accumulate evidence in favour of the different alternatives before committing to a decision. Neural correlates of this accumulating activity have been found during perceptual decisions in parietal and prefrontal cortex; however the source of such activity in value-based choices remains unknown. Here we use simultaneous EEG–fMRI and computational modelling to identify EEG signals reflecting an accumulation process and demonstrate that the within- and across-trial variability in these signals explains fMRI responses in posterior-medial frontal cortex. Consistent with its role in integrating the evidence prior to reaching a decision, this region also exhibits task-dependent coupling with the ventromedial prefrontal cortex and the striatum, brain areas known to encode the subjective value of the decision alternatives. These results further endorse the proposition of an evidence accumulation process during value-based decisions in humans and implicate the posterior-medial frontal cortex in this process

    Auditory information enhances post-sensory visual evidence during rapid multisensory decision-making

    Get PDF
    Despite recent progress in understanding multisensory decision-making, a conclusive mechanistic account of how the brain translates the relevant evidence into a decision is lacking. Specifically, it remains unclear whether perceptual improvements during rapid multisensory decisions are best explained by sensory (i.e., ‘Early’) processing benefits or post-sensory (i.e., ‘Late’) changes in decision dynamics. Here, we employ a well-established visual object categorisation task in which early sensory and post-sensory decision evidence can be dissociated using multivariate pattern analysis of the electroencephalogram (EEG). We capitalize on these distinct neural components to identify when and how complementary auditory information influences the encoding of decision-relevant visual evidence in a multisensory context. We show that it is primarily the post-sensory, rather than the early sensory, EEG component amplitudes that are being amplified during rapid audiovisual decision-making. Using a neurally informed drift diffusion model we demonstrate that a multisensory behavioral improvement in accuracy arises from an enhanced quality of the relevant decision evidence, as captured by the post-sensory EEG component, consistent with the emergence of multisensory evidence in higher-order brain areas

    Structure and carbon stocks of accessible mangroves under different conservation status in the Colombian Caribbean

    No full text
    This is the final version. Available from Elsevier via the DOI in this record. Data availability: The research data supporting this publication is available at Zenodo (doi:10.5281/zenodo.11220445) and the University of Exeter’s institutional repository.Mangroves are under immense anthropogenic pressures globally which are further exacerbated by their accessibility to humans. To minimize human access hence pressures to the ecosystem, establishment of protected areas is often employed. However, the ecological effectiveness of protected areas, which influences their legal durability, is rarely assessed beyond curbing deforestation. Furthermore, little is known about whether protection could still provide a positive ecological impact if the sites are easily accessible, i.e., adjacent to urban areas, near roads, small in area and/or fragmented. To improve our understanding thereon, this study compares anthropogenic disturbance severity, forest structures and ecosystem carbon (C) stocks of protected and unprotected mangroves near Barranquilla, Colombia's largest coastal city. The outcomes suggest that accessible, yet protected mangrove has a mean disturbance index of 5.3, lower than unprotected mangrove (mean 11). Protected mangrove also has higher mean (± SD) tree basal area (26.5 ± 15.6 m2 ha−1), mean densities of tree, sapling and seedling (899 ± 398, 5155 ± 7860, and 68,837 ± 73,899 individual ha−1, respectively) and biomass C stock (mean 89.5 ± 39 Mg ha−1) than those of accessible unprotected mangrove (mean basal area 19.3 ± 5 m2 ha−1; mean tree, sapling and seedling densities 823 ± 215, 749 ± 94, and 33,727 ± 44,882 individual ha−1, respectively; mean biomass C stock 60.2 ± 14.5 Mg ha−1). Results suggest that the current sediment C stocks, that is higher in unprotected than protected mangroves (396.8 ± 552.6 and 142.4 ± 205.7 Mg ha−1, respectively), are not primarily driven by conservation status, but by long-term processes that likely pre-date the protected status designation. Mangrove protection, however, could help maintain carbon stocks in soils and biomass and the potential for further soil carbon sequestration, and thus are pivotal in determining future trajectories of mangrove climate mitigation potential. This study shows that even imperfect protection offers ecological benefits to highly accessible ecosystems. Hence, focus should be placed on optimizing these benefits and minimizing their vulnerability to downgrading, downsizing and degazettement.Natural Environment Research Council (NERC

    The precision of value-based choices depends causally on fronto-parietal phase coupling

    No full text
    Which meal would you like today, chicken or pasta? For such value-based choices, organisms must flexibly integrate various types of sensory information about internal states and the environment to transform them into actions. Recent accounts suggest that these choice-relevant processes are mediated by information transfer between functionally specialized but spatially distributed brain regions in parietal and prefrontal cortex; however, it remains unclear whether such fronto-parietal communication is causally involved in guiding value-based choices. We find that transcranially inducing oscillatory desynchronization between the frontopolar and -parietal cortex leads to more inaccurate choices between food rewards while leaving closely matched perceptual decisions unaffected. Computational modelling shows that this exogenous manipulation leads to imprecise value assignments to the choice alternatives. Thus, our study demonstrates that accurate value-based decisions critically involve coherent rhythmic information transfer between fronto-parietal brain areas and establishes an experimental approach to non-invasively manipulate the precision of value-based choices in humans
    corecore