15,752 research outputs found

    Nitric oxide pollutant formation in high hydrogen content (HHC) syngas flames

    Get PDF
    Three-dimensional direct numerical simulations (DNS) of high hydrogen content (HHC) syngas nonpremixed jet flames with a Reynolds number of Re = 6000 have been carried out to study the nitric oxide (NO) pollutant formation. The detailed chemistry employed is the GRI 3.0 updated with the influence of the NCN radical chemistry using flamelet generated manifolds (FGM). Preferential diffusion effects have been considered via FGM tabulation and the reaction progress variable transport equation. The DNS based quantitative results indicate a strong correlation between the flame temperature and NO concentration for the pure hydrogen flame, in which NO formation is mainly characterised by the Zeldovich mechanism. The results also indicate a rapid decrease of maximum NO values in H2/CO syngas mixtures due to lower temperatures associated with the CO-dilution into H2. Results on NO formation routes in H2/CO syngas flames show that while the Zeldovich mechanism dominates the NO formation at low strain rates, the high NO formation rate at high strain rates is entirely caused by the NNH mechanism. We also found that the Fenimore mechanism has a least contribution on NO formation in H2/CO syngas flames due to absence of CH radicals in the oxidation of CO. It is found that, due to preferential diffusion, NO concentration exhibits higher values near the flame base depending on the hydrogen content in H2/CO syngas fuel mixture

    FSL-BM: Fuzzy Supervised Learning with Binary Meta-Feature for Classification

    Full text link
    This paper introduces a novel real-time Fuzzy Supervised Learning with Binary Meta-Feature (FSL-BM) for big data classification task. The study of real-time algorithms addresses several major concerns, which are namely: accuracy, memory consumption, and ability to stretch assumptions and time complexity. Attaining a fast computational model providing fuzzy logic and supervised learning is one of the main challenges in the machine learning. In this research paper, we present FSL-BM algorithm as an efficient solution of supervised learning with fuzzy logic processing using binary meta-feature representation using Hamming Distance and Hash function to relax assumptions. While many studies focused on reducing time complexity and increasing accuracy during the last decade, the novel contribution of this proposed solution comes through integration of Hamming Distance, Hash function, binary meta-features, binary classification to provide real time supervised method. Hash Tables (HT) component gives a fast access to existing indices; and therefore, the generation of new indices in a constant time complexity, which supersedes existing fuzzy supervised algorithms with better or comparable results. To summarize, the main contribution of this technique for real-time Fuzzy Supervised Learning is to represent hypothesis through binary input as meta-feature space and creating the Fuzzy Supervised Hash table to train and validate model.Comment: FICC201

    Mouthwash Effects on LGG-Integrated Experimental Oral Biofilms

    Get PDF
    In order to investigate the effects of mouthwashes on oral biofilms with probiotics, we compared in biofilms the susceptibility to mouthwashes of probiotic Lactobacillus rhamnosus GG (LGG) and oral pathogens Streptococcus mutans, Streptococcus sanguinis, and Candida albicans. We also evaluated these pathogens’ susceptibility to the mouthwashes and their recovery after mouthwash-rinsing in biofilms with/without LGG. First, 1-day-/3-day-old LGG-integrated multi-species biofilms were exposed for 1 min to mouthwashes containing chlorhexidine, essential oils, or amine fluoride/stannous fluoride. Cells were plate-counted and relative survival rates (RSRs) of LGG and pathogens calculated. Second, 1-day-/3-day-old multispecies biofilms with and without LGG were exposed for 1 min to mouthwashes; cells were plate-counted and the pathogens’ RSRs were calculated. Third, 1-day-old biofilms were treated for 1 min with mouthwashes. Cells were plate-counted immediately and after 2-day cultivation. Recovery rates of pathogens were calculated and compared between biofilms with/without LGG. Live/Dead¼ staining served for structural analyses. Our results showed that RSRs of LGG were insignificantly smaller than those of pathogens in both 1-day and 3-day biofilms. No significant differences appeared in pathogens’ RSRs and recovery rates after treatment between biofilms with/without LGG. To conclude, biofilm LGG was susceptible to the mouthwashes; but biofilm LGG altered neither the mouthwash effects on oral pathogens nor affected their recovery

    Mouthwash Effects on LGG-Integrated Experimental Oral Biofilms

    Get PDF
    In order to investigate the effects of mouthwashes on oral biofilms with probiotics, we compared in biofilms the susceptibility to mouthwashes of probiotic Lactobacillus rhamnosus GG (LGG) and oral pathogens Streptococcus mutans, Streptococcus sanguinis, and Candida albicans. We also evaluated these pathogens’ susceptibility to the mouthwashes and their recovery after mouthwash-rinsing in biofilms with/without LGG. First, 1-day-/3-day-old LGG-integrated multi-species biofilms were exposed for 1 min to mouthwashes containing chlorhexidine, essential oils, or amine fluoride/stannous fluoride. Cells were plate-counted and relative survival rates (RSRs) of LGG and pathogens calculated. Second, 1-day-/3-day-old multispecies biofilms with and without LGG were exposed for 1 min to mouthwashes; cells were plate-counted and the pathogens’ RSRs were calculated. Third, 1-day-old biofilms were treated for 1 min with mouthwashes. Cells were plate-counted immediately and after 2-day cultivation. Recovery rates of pathogens were calculated and compared between biofilms with/without LGG. Live/Dead¼ staining served for structural analyses. Our results showed that RSRs of LGG were insignificantly smaller than those of pathogens in both 1-day and 3-day biofilms. No significant differences appeared in pathogens’ RSRs and recovery rates after treatment between biofilms with/without LGG. To conclude, biofilm LGG was susceptible to the mouthwashes; but biofilm LGG altered neither the mouthwash effects on oral pathogens nor affected their recovery

    Surface Characterisation Based Tool Wear Monitoring in Peripheral milling

    Get PDF
    The progress of surface metrology in the last decade has led to improved 3D characterisation of surfaces which offers the possibility of monitoring manufacturing operations to give highly detailed information regarding the machine tool condition. This paper presents a case study where areal surface characterisation is used to monitor tool wear in peripheral milling. Due to the fact that tool wear has a direct effect on the machined workpiece surface, the machined surface topography contains much information concerning the machining conditions including the tool wear state. Through analysing the often subtle changes in the surface topography the tool wear state can be highlighted. This paper utilises areal surface characterization, areal auto-correlation function (AACF) and pattern analysis to illustrate the effect of tool wear on the workpiece surface. The result shows that: (1) tool wear, previously difficult to detect will influence almost all of the areal surface parameters; (2) the pattern features of AACF spectrum can reflect the subtle surface texture variation with increasing tool wear. The authors consider that, combined analysis of the surface roughness and its AACF spectrum are a good choice for monitoring the tool wear state especially with the latest developments in on-machine surface metrology

    qKAT: a high-throughput qPCR method for KIR gene copy number and haplotype determination.

    Get PDF
    Killer cell immunoglobulin-like receptors (KIRs), expressed on natural killer cells and T cells, have considerable biomedical relevance playing significant roles in immunity, pregnancy and transplantation. The KIR locus is one of the most complex and polymorphic regions of the human genome. Extensive sequence homology and copy number variation makes KIRs technically laborious and expensive to type. To aid the investigation of KIRs in human disease we developed a high-throughput, multiplex real-time polymerase chain reaction method to determine gene copy number for each KIR locus. We used reference DNA samples to validate the accuracy and a cohort of 1698 individuals to evaluate capability for precise copy number discrimination. The method provides improved information and identifies KIR haplotype alterations that were not previously visible using other approaches.This work was funded by the Medical Research Council (MRC) and the Wellcome Trust with partial funding from the National Institute of Health (NIH) Cambridge Biomedical Research Centre and NIH Research Blood and Transplant Research Unit (NIHR BTRU) in Organ Donation and Transplantation at the University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT)

    Generation of Ultrastable Microwaves via Optical Frequency Division

    Full text link
    There has been increased interest in the use and manipulation of optical fields to address challenging problems that have traditionally been approached with microwave electronics. Some examples that benefit from the low transmission loss, agile modulation and large bandwidths accessible with coherent optical systems include signal distribution, arbitrary waveform generation, and novel imaging. We extend these advantages to demonstrate a microwave generator based on a high-Q optical resonator and a frequency comb functioning as an optical-to-microwave divider. This provides a 10 GHz electrical signal with fractional frequency instability <8e-16 at 1 s, a value comparable to that produced by the best microwave oscillators, but without the need for cryogenic temperatures. Such a low-noise source can benefit radar systems, improve the bandwidth and resolution of communications and digital sampling systems, and be valuable for large baseline interferometry, precision spectroscopy and the realization of atomic time

    Generalized Painleve-Gullstrand descriptions of Kerr-Newman black holes

    Full text link
    Generalized Painleve-Gullstrand metrics are explicitly constructed for the Kerr-Newman family of charged rotating black holes. These descriptions are free of all coordinate singularities; moreover, unlike the Doran and other proposed metrics, an extra tunable function is introduced to ensure all variables in the metrics remain real for all values of the mass M, charge Q, angular momentum aM, and cosmological constant \Lambda > - 3/(a^2). To describe fermions in Kerr-Newman spacetimes, the stronger requirement of non-singular vierbein one-forms at the horizon(s) is imposed and coordinate singularities are eliminated by local Lorentz boosts. Other known vierbein fields of Kerr-Newman black holes are analysed and discussed; and it is revealed that some of these descriptions are actually not related by physical Lorentz transformations to the original Kerr-Newman expression in Boyer-Lindquist coordinates - which is the reason complex components appear (for certain ranges of the radial coordinate) in these metrics. As an application of our constructions the correct effective Hawking temperature for Kerr black holes is derived with the method of Parikh and Wilczek.Comment: 5 pages; extended to include application to derivation of Hawking radiation for Kerr black holes with Parikh-Wilczek metho
    • 

    corecore