71 research outputs found

    Stories Have the Power to Save us: A Neurological Framework for the Imperative to Tell Stories

    Get PDF
    The evolutionary advantage of humans is in our unique ability to process stories – we have highly evolved ‘narrative organs.’ Through storytelling, vicarious knowledge, even guarded knowledge, is used to help our species survive. We learn, regardless of whether the story being told is ‘truth’ or ‘fiction.’ Humans place themselves in stories, as both observer and participant, to create a ‘neural balance’ or sweet spot that allows them to be immersed in a story without being entirely threatened by it – and this involvement in story leads to the formation of empathy – an empathy that is integral to forging a future humanity. It is through empathy, we argue, that stories have the power to save us. The hippocampi process narrative details. Situated alongside are the amygdalae – organs that place the reader in the story. The temporal lobes store ‘story nuggets.’ Finally there’s the frontal cortex to inhibit full participation in narrative, so that the story can be experienced vicariously

    Mitochondrial complex I and cell death: a semi-automatic shotgun model

    Get PDF
    Mitochondrial dysfunction often leads to cell death and disease. We can now draw correlations between the dysfunction of one of the most important mitochondrial enzymes, NADH:ubiquinone reductase or complex I, and its structural organization thanks to the recent advances in the X-ray structure of its bacterial homologs. The new structural information on bacterial complex I provide essential clues to finally understand how complex I may work. However, the same information remains difficult to interpret for many scientists working on mitochondrial complex I from different angles, especially in the field of cell death. Here, we present a novel way of interpreting the bacterial structural information in accessible terms. On the basis of the analogy to semi-automatic shotguns, we propose a novel functional model that incorporates recent structural information with previous evidence derived from studies on mitochondrial diseases, as well as functional bioenergetics

    Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states.

    Get PDF
    Complex I (NADH:ubiquinone oxidoreductase) uses the reducing potential of NADH to drive protons across the energy-transducing inner membrane and power oxidative phosphorylation in mammalian mitochondria. Recent cryo-EM analyses have produced near-complete models of all 45 subunits in the bovine, ovine and porcine complexes and have identified two states relevant to complex I in ischemia-reperfusion injury. Here, we describe the 3.3-Ã… structure of complex I from mouse heart mitochondria, a biomedically relevant model system, in the 'active' state. We reveal a nucleotide bound in subunit NDUFA10, a nucleoside kinase homolog, and define mechanistically critical elements in the mammalian enzyme. By comparisons with a 3.9-Ã… structure of the 'deactive' state and with known bacterial structures, we identify differences in helical geometry in the membrane domain that occur upon activation or that alter the positions of catalytically important charged residues. Our results demonstrate the capability of cryo-EM analyses to challenge and develop mechanistic models for mammalian complex I

    Positive Darwinian Selection in the Piston That Powers Proton Pumps in Complex I of the Mitochondria of Pacific Salmon

    Get PDF
    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm

    The DRUID study: racism and self-assessed health status in an indigenous population

    Get PDF
    BackgroundThere is now considerable evidence from around the world that racism is associated with both mental and physical ill-health. However, little is known about the mediating factors between racism and ill-health. This paper investigates relationships between racism and self-assessed mental and physical health among Indigenous Australians as well as potential mediators of these relationships.MethodsA total of 164 adults in the Darwin Region Urban Indigenous Diabetes (DRUID) study completed a validated instrument assessing interpersonal racism and a separate item on discrimination-related stress. Self-assessed health status was measured using the SF-12. Stress, optimism, lack of control, social connections, cultural identity and reactions/responses to interpersonal racism were considered as mediators and moderators of the relationship between racism/discrimination and self-assessed health status.ResultsAfter adjusting for socio-demographic factors, interpersonal racism was significantly associated with the SF-12 mental (but not the physical) health component. Stress, lack of control and feeling powerless as a reaction to racism emerged as significant mediators of the relationship between racism and general mental health. Similar findings emerged for discrimination-related stress.ConclusionsRacism/discrimination is significantly associated with poor general mental health among this indigenous population. The mediating factors between racism and mental health identified in this study suggest new approaches to ameliorating the detrimental effects of racism on health. In particular, the importance of reducing racism-related stress, enhancing general levels of mastery, and minimising negative social connections in order to ameliorate the negative consequences of racism

    An Individual-Oriented Model on the Emergence of Support in Fights, Its Reciprocation and Exchange

    Get PDF
    Complex social behaviour of primates has usually been attributed to the operation of complex cognition. Recently, models have shown that constraints imposed by the socio-spatial structuring of individuals in a group may result in an unexpectedly high number of patterns of complex social behaviour, resembling the dominance styles of egalitarian and despotic species of macaques and the differences between them. This includes affiliative patterns, such as reciprocation of grooming, grooming up the hierarchy, and reconciliation. In the present study, we show that the distribution of support in fights, which is the social behaviour that is potentially most sophisticated in terms of cognitive processes, may emerge in the same way. The model represents the spatial grouping of individuals and their social behaviour, such as their avoidance of risks during attacks, the self-reinforcing effects of winning and losing their fights, their tendency to join in fights of others that are close by (social facilitation), their tendency to groom when they are anxious, the reduction of their anxiety by grooming, and the increase of anxiety when involved in aggression. Further, we represent the difference in intensity of aggression apparent in egalitarian and despotic macaques. The model reproduces many aspects of support in fights, such as its different types, namely, conservative, bridging and revolutionary, patterns of choice of coalition partners attributed to triadic awareness, those of reciprocation of support and ‘spiteful acts’ and of exchange between support and grooming. This work is important because it suggests that behaviour that seems to result from sophisticated cognition may be a side-effect of spatial structure and dominance interactions and it shows that partial correlations fail to completely omit these effects of spatial structure. Further, the model is falsifiable, since it results in many patterns that can easily be tested in real primates by means of existing data

    Connexin channels and phospholipids: association and modulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood.</p> <p>Results</p> <p>Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred.</p> <p>Conclusion</p> <p>This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents.</p

    fisheries and tourism social economic and ecological trade offs in coral reef systems

    Get PDF
    Coastal communities are exerting increasingly more pressure on coral reef ecosystem services in the Anthropocene. Balancing trade-offs between local economic demands, preservation of traditional values, and maintenance of both biodiversity and ecosystem resilience is a challenge for reef managers and resource users. Consistently, growing reef tourism sectors offer more lucrative livelihoods than subsistence and artisanal fisheries at the cost of traditional heritage loss and ecological damage. Using a systematic review of coral reef fishery reconstructions since the 1940s, we show that declining trends in fisheries catch and fish stocks dominate coral reef fisheries globally, due in part to overfishing of schooling and spawning-aggregating fish stocks vulnerable to exploitation. Using a separate systematic review of coral reef tourism studies since 2013, we identify socio-ecological impacts and economic opportunities associated to the industry. Fisheries and tourism have the potential to threaten the ecological stability of coral reefs, resulting in phase shifts toward less productive coral-depleted ecosystem states. We consider whether four common management strategies (unmanaged commons, ecosystem-based management, co-management, and adaptive co-management) fulfil ecological conservation and socioeconomic goals, such as living wage, job security, and maintenance of cultural traditions. Strategies to enforce resource exclusion and withhold traditional resource rights risk social unrest; thus, the coexistence of fisheries and tourism industries is essential. The purpose of this chapter is to assist managers and scientists in their responsibility to devise implementable strategies that protect local community livelihoods and the coral reefs on which they rely
    • …
    corecore