1,244 research outputs found

    Conductivity of Strongly Coupled Striped Superconductor

    Get PDF
    We study the conductivity of a strongly coupled striped superconductor using gauge/gravity duality (holography). The study is done analytically, in the large modulation regime. We show that the optical conductivity is inhomogeneous but isotropic at low temperatures. Near but below the critical temperature, we calculate the conductivity analytically at small frequency \omega, and find it to be both inhomogeneous and anisotropic. The anisotropy is imaginary and scales like 1/\omega. We also calculate analytically the speed of the second sound and the thermodynamic susceptibility.Comment: 32 page

    Einstein black holes, free scalars and AdS/CFT correspondence

    Full text link
    We investigate AdS/CFT correspondence for two families of Einstein black holes in d > 3 dimensions, modelling the boundary CFT by a free conformal scalar field and evaluating the boundary two-point function in the bulk geodesic approximation. For the d > 3 counterpart of the nonrotating BTZ hole and for its Z_2 quotient, the boundary state is thermal in the expected sense, and its stress-energy reflects the properties of the bulk geometry and suggests a novel definition for the mass of the hole. For the generalised Schwarzschild-AdS hole with a flat horizon of topology R^{d-2}, the boundary stress-energy has a thermal form with energy density proportional to the hole ADM mass, but stress-energy corrections from compactified horizon dimensions cannot be consistently included at least for d=5.Comment: 32 pages. LaTeX with amsfonts, amsmath, amssymb. (v2: References added. v3: Geodesic horizon-crossing clarified in section 2; comparison with quasilocal energy-momentum included in section 4.

    Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality

    Get PDF
    We study lattice effects in strongly coupled systems of fermions at a finite density described by a holographic dual consisting of fermions in Anti-de-Sitter space in the presence of a Reissner-Nordstrom black hole. The lattice effect is encoded by a periodic modulation of the chemical potential with a wavelength of order of the intrinsic length scales of the system. This corresponds with a highly complicated "band structure" problem in AdS, which we only manage to solve in the weak potential limit. The "domain wall" fermions in AdS encoding for the Fermi surfaces in the boundary field theory diffract as usually against the periodic lattice, giving rise to band gaps. However, the deep infrared of the field theory as encoded by the near horizon AdS2 geometry in the bulk reacts in a surprising way to the weak potential. The hybridization of the fermions bulk dualizes into a linear combination of CFT1 "local quantum critical" propagators in the bulk, characterized by momentum dependent exponents displaced by lattice Umklapp vectors. This has the consequence that the metals showing quasi-Fermi surfaces cannot be localized in band insulators. In the AdS2 metal regime, where the conformal dimension of the fermionic operator is large and no Fermi surfaces are present at low T/\mu, the lattice gives rise to a characteristic dependence of the energy scaling as a function of momentum. We predict crossovers from a high energy standard momentum AdS2 scaling to a low energy regime where exponents found associated with momenta "backscattered" to a lower Brillioun zone in the extended zone scheme. We comment on how these findings can be used as a unique fingerprint for the detection of AdS2 like "pseudogap metals" in the laboratory.Comment: 42 pages, 5 figures; v2, minor correction, to appear in JHE

    Holographic Metamagnetism, Quantum Criticality, and Crossover Behavior

    Full text link
    Using high-precision numerical analysis, we show that 3+1 dimensional gauge theories holographically dual to 4+1 dimensional Einstein-Maxwell-Chern-Simons theory undergo a quantum phase transition in the presence of a finite charge density and magnetic field. The quantum critical theory has dynamical scaling exponent z=3, and is reached by tuning a relevant operator of scaling dimension 2. For magnetic field B above the critical value B_c, the system behaves as a Fermi liquid. As the magnetic field approaches B_c from the high field side, the specific heat coefficient diverges as 1/(B-B_c), and non-Fermi liquid behavior sets in. For B<B_c the entropy density s becomes non-vanishing at zero temperature, and scales according to s \sim \sqrt{B_c - B}. At B=B_c, and for small non-zero temperature T, a new scaling law sets in for which s\sim T^{1/3}. Throughout a small region surrounding the quantum critical point, the ratio s/T^{1/3} is given by a universal scaling function which depends only on the ratio (B-B_c)/T^{2/3}. The quantum phase transition involves non-analytic behavior of the specific heat and magnetization but no change of symmetry. Above the critical field, our numerical results are consistent with those predicted by the Hertz/Millis theory applied to metamagnetic quantum phase transitions, which also describe non-analytic changes in magnetization without change of symmetry. Such transitions have been the subject of much experimental investigation recently, especially in the compound Sr_3 Ru_2 O_7, and we comment on the connections.Comment: 23 pages, 8 figures v2: added ref

    The entropy of black holes: a primer

    Full text link
    After recalling the definition of black holes, and reviewing their energetics and their classical thermodynamics, one expounds the conjecture of Bekenstein, attributing an entropy to black holes, and the calculation by Hawking of the semi-classical radiation spectrum of a black hole, involving a thermal (Planckian) factor. One then discusses the attempts to interpret the black-hole entropy as the logarithm of the number of quantum micro-states of a macroscopic black hole, with particular emphasis on results obtained within string theory. After mentioning the (technically cleaner, but conceptually more intricate) case of supersymmetric (BPS) black holes and the corresponding counting of the degeneracy of Dirichlet-brane systems, one discusses in some detail the ``correspondence'' between massive string states and non-supersymmetric Schwarzschild black holes.Comment: 51 pages, 4 figures, talk given at the "Poincare seminar" (Paris, 6 December 2003), to appear in Poincare Seminar 2003 (Birkhauser

    The depression in visual impairment trial (DEPVIT): trial design and protocol

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; The prevalence of depression in people with a visual disability is high but screening for depression and referral for treatment is not yet an integral part of visual rehabilitation service provision. One reason for this may be that there is no good evidence about the effectiveness of treatments in this patient group. This study is the first to evaluate the effect of depression treatments on people with a visual impairment and co morbid depression.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods/design&lt;/b&gt; The study is an exploratory, multicentre, individually randomised waiting list controlled trial. Participants will be randomised to receive Problem Solving Therapy (PST), a ‘referral to the GP’ requesting treatment according to the NICE’s ‘stepped care’ recommendations or the waiting list arm of the trial. The primary outcome measure is change (from randomisation) in depressive symptoms as measured by the Beck’s Depression Inventory (BDI-II) at 6 months. Secondary outcomes include change in depressive symptoms at 3 months, change in visual function as measured with the near vision subscale of the VFQ-48 and 7 item NEI-VFQ at 3 and 6 months, change in generic health related quality of life (EQ5D), the costs associated with PST, estimates of incremental cost effectiveness, and recruitment rate estimation.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Discussion&lt;/b&gt; Depression is prevalent in people with disabling visual impairment. This exploratory study will establish depression screening and referral for treatment in visual rehabilitation clinics in the UK. It will be the first to explore the efficacy of PST and the effectiveness of NICE’s ‘stepped care’ approach to the treatment of depression in people with a visual impairment.&lt;p&gt;&lt;/p&gt

    Can holography reproduce the QCD Wilson line?

    Full text link
    Recently a remarkable agreement was found between lattice simulations of long Wilson lines and behavior of the Nambu Goto string in flat space-time. However, the latter fails to fit the short distance behavior since it admits a tachyonic mode for a string shorter than a critical length. In this paper we examine the question of whether a classical holographic Wilson line can reproduce the lattice results for Wilson lines of any length. We determine the condition on the the gravitational background to admit a Coulombic potential at short distances. We analyze the system using three different renormalization schemes. We perform an explicit best fit comparison of the lattice results with the holographic models based on near extremal D3 and D4 branes, non-critical near extremal AdS6 model and the Klebanov Strassler model. We find that all the holographic models examined admit after renormalization a constant term in the potential. We argue that the curves of the lattice simulation also have such a constant term and we discuss its physical interpretation
    • …
    corecore