110 research outputs found

    Breaking the generic mould? Grayson Perry, Channel 4 and the production of British arts television

    Get PDF
    © 2018, © The Author(s) 2018. This article examines Channel 4’s critically acclaimed series, Grayson Perry: Who Are You? (2014). Using interviews with those involved in making the series and textual analysis, we argue that the elements that contributed to the success of the series are inherently difficult to replicate due to the political economy of contemporary television production, thereby threatening the sustainability of the genre. However, while arts television rarely constitutes a commercial success in a traditional ratings sense, we outline the strategic value of the genre in contributing to Channel 4’s identity as Britain’s alternative public service broadcaster

    αA-crystallin R49Cneo mutation influences the architecture of lens fiber cell membranes and causes posterior and nuclear cataracts in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>αA-crystallin (CRYAA/HSPB4), a major component of all vertebrate eye lenses, is a small heat shock protein responsible for maintaining lens transparency. The R49C mutation in the αA-crystallin protein is linked with non-syndromic, hereditary human cataracts in a four-generation Caucasian family.</p> <p>Methods</p> <p>This study describes a mouse cataract model generated by insertion of a neomycin-resistant (neo<sup>r</sup>) gene into an intron of the gene encoding mutant R49C αA-crystallin. Mice carrying the neo<sup>r </sup>gene and wild-type <it>Cryaa </it>were also generated as controls. Heterozygous knock-in mice containing one wild type gene and one mutated gene for αA-crystallin (WT/R49C<sup>neo</sup>) and homozygous knock-in mice containing two mutated genes (R49C<sup>neo</sup>/R49C<sup>neo</sup>) were compared.</p> <p>Results</p> <p>By 3 weeks, WT/R49C<sup>neo </sup>mice exhibited large vacuoles in the cortical region 100 μm from the lens surface, and by 3 months posterior and nuclear cataracts had developed. WT/R49C<sup>neo </sup>mice demonstrated severe posterior cataracts at 9 months of age, with considerable posterior nuclear migration evident in histological sections. R49C<sup>neo</sup>/R49C<sup>neo </sup>mice demonstrated nearly complete lens opacities by 5 months of age. In contrast, R49C mice in which the neo<sup>r </sup>gene was deleted by breeding with CreEIIa mice developed lens abnormalities at birth, suggesting that the neo<sup>r </sup>gene may suppress expression of mutant R49C αA-crystallin protein.</p> <p>Conclusion</p> <p>It is apparent that modification of membrane and cell-cell interactions occurs in the presence of the αA-crystallin mutation and rapidly leads to lens cell pathology <it>in vivo</it>.</p

    Cataract-Causing Defect of a Mutant γ-Crystallin Proceeds through an Aggregation Pathway Which Bypasses Recognition by the α-Crystallin Chaperone

    Get PDF
    Background: The transparency of the eye lens depends upon maintenance of the native state of the γ- and β-crystallins, which is aided by the abundant chaperones αA- and αB-crystallin. Mature onset cataract, the leading cause of blindness worldwide, involves the polymerization of covalently damaged or partially unfolded crystallins into light-scattering aggregates. A number of single amino acid substitutions and truncations of γ-crystallins result in congenital cataract in both humans and mice, though in many cases the coupling between the protein alterations and the accumulation of aggregates is poorly defined. Methodology/Principal Findings: We have studied the aggregation properties and chaperone interactions of human γD-crystallin carrying substitutions of two buried core mutants, I90F and V75D, which cause congenital cataract in mice. The in vitro aggregation pathway competing with productive refolding was not altered by either substitution. Furthermore, this aggregation pathway for both mutant proteins–originating from a partially folded intermediate–was efficiently suppressed by αB-crystallin. Thus the cataract pathology was unlikely to be associated with a direct folding defect. The native state of wild-type human γD-crystallin exhibited no tendency to aggregate under physiological conditions. However both I90F and V75D native-like proteins exhibited slow (days) aggregation to high molecular weight aggregates under physiological conditions. The perturbed conformation of I90F was recognized and bound by both αA and αB chaperones. In contrast, the aggregation derived from the perturbed state of V75D was not suppressed by either chaperone, and the aggregating species were not bound by the chaperone. Conclusions/Significance: The cataract phenotype of I90F in mice may be due to premature saturation of the finite α- crystallin pool. The V75D aggregation pathway and its escape from chaperone surveillance and aggregation suppression can account for the congenital cataract pathology of this mutant. Failure of chaperone recognition may be an important source of pathology for many other protein folding defects.National Eye Institute (Grant no. EY015834 )National Institutes of Health (U.S.) (Grant no. GM17980

    Why Don't CD8+ T Cells Reduce the Lifespan of SIV-Infected Cells In Vivo?

    Get PDF
    In January 2010 two groups independently published the observation that the depletion of CD8+ cells in SIV-infected macaques had no detectable impact on the lifespan of productively infected cells. This unexpected observation led the authors to suggest that CD8+ T cells control SIV viraemia via non-lytic mechanisms. However, a number of alternative plausible explanations, compatible with a lytic model of CD8+ T cell control, were proposed. This left the field with no consensus on how to interpret these experiments and no clear indication whether CD8+ T cells operated primarily via a lytic or a non-lytic mechanism. The aim of this work was to investigate why CD8+ T cells do not appear to reduce the lifespan of SIV-infected cells in vivo

    Can Non-lytic CD8+T Cells Drive HIV-1 Escape?

    Get PDF
    The CD8+ T cell effector mechanisms that mediate control of HIV-1 and SIV infections remain poorly understood. Recent work suggests that the mechanism may be primarily non-lytic. This is in apparent conflict with the observation that SIV and HIV-1 variants that escape CD8+ T cell surveillance are frequently selected. Whilst it is clear that a variant that has escaped a lytic response can have a fitness advantage compared to the wild-type, it is less obvious that this holds in the face of non-lytic control where both wild-type and variant infected cells would be affected by soluble factors. In particular, the high motility of T cells in lymphoid tissue would be expected to rapidly destroy local effects making selection of escape variants by non-lytic responses unlikely. The observation of frequent HIV-1 and SIV escape poses a number of questions. Most importantly, is the consistent observation of viral escape proof that HIV-1- and SIV-specific CD8+ T cells lyse infected cells or can this also be the result of non-lytic control? Additionally, the rate at which a variant strain escapes a lytic CD8+ T cell response is related to the strength of the response. Is the same relationship true for a non-lytic response? Finally, the potential anti-viral control mediated by non-lytic mechanisms compared to lytic mechanisms is unknown. These questions cannot be addressed with current experimental techniques nor with the standard mathematical models. Instead we have developed a 3D cellular automaton model of HIV-1 which captures spatial and temporal dynamics. The model reproduces in vivo HIV-1 dynamics at the cellular and population level. Using this model we demonstrate that non-lytic effector mechanisms can select for escape variants but that outgrowth of the variant is slower and less frequent than from a lytic response so that non-lytic responses can potentially offer more durable control

    Models for Prediction of Factor VIII Half-Life in Severe Haemophiliacs: Distinct Approaches for Blood Group O and Non-O Patients

    Get PDF
    BACKGROUND: Von Willebrand factor (VWF) is critical for the in vivo survival of factor VIII (FVIII). Since FVIII half-life correlates with VWF-antigen pre-infusion levels, we hypothesized that VWF levels are useful to predict FVIII half-life. METHODOLOGY: Standardized half-life studies and analysis of pre-infusion VWF and VWF-propeptide levels were performed in a cohort of 38 patients with severe haemophilia A (FVIII <1 IU/ml), aged 15-44 years. Nineteen patients had blood-group O. Using multivariate linear regression-analysis (MVLR-analysis), the association of VWF-antigen, VWF-propeptide, age and body-weight with FVIII half-life was evaluated. PRINCIPAL FINDINGS: FVIII half-life was shorter in blood-group O-patients compared to non-O-patients (11.5+/-2.6 h versus 14.3+/-3.0 h; p = 0.004). VWF-antigen levels correlated with FVIII half-life considerably better in patients with blood-group non-O than O (Pearson-rank = 0.70 and 0.47, respectively). Separate prediction models evolved from MVLR-analysis for blood-group O and non-O patients, based on VWF-antigen and VWF/propeptide ratio. Predicted half-lives deviated less than 3 h of observed half-life in 34/38 patients (89%) or less than 20% in 31/38 patients (82%). CONCLUSION: Our approach may identify patients with shorter FVIII half-lives, and adapt treatment protocols when half-life studies are unavailable. In addition, our data indicate that survival of FVIII is determined by survival of endogenous VWF rather than VWF levels per se

    Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease

    Get PDF
    One of the long-term goals of mutagenesis programs in the mouse has been to generate mutant lines to facilitate the functional study of every mammalian gene. With a combination of complementary genetic approaches and advances in technology, this aim is slowly becoming a reality. One of the most important features of this strategy is the ability to identify and compare a number of mutations in the same gene, an allelic series. With the advent of gene-driven screening of mutant archives, the search for a specific series of interest is now a practical option. This review focuses on the analysis of multiple mutations from chemical mutagenesis projects in a wide variety of genes and the valuable functional information that has been obtained from these studies. Although gene knockouts and transgenics will continue to be an important resource to ascertain gene function, with a significant proportion of human diseases caused by point mutations, identifying an allelic series is becoming an equally efficient route to generating clinically relevant and functionally important mouse models

    Sequencing of Pax6 loci from the elephant shark reveals a family of Pax6 genes in vertebrate genomes, forged by ancient duplications and divergences

    Get PDF
    Pax6 is a developmental control gene essential for eye development throughout the animal kingdom. In addition, Pax6 plays key roles in other parts of the CNS, olfactory system, and pancreas. In mammals a single Pax6 gene encoding multiple isoforms delivers these pleiotropic functions. Here we provide evidence that the genomes of many other vertebrate species contain multiple Pax6 loci. We sequenced Pax6-containing BACs from the cartilaginous elephant shark (Callorhinchus milii) and found two distinct Pax6 loci. Pax6.1 is highly similar to mammalian Pax6, while Pax6.2 encodes a paired-less Pax6. Using synteny relationships, we identify homologs of this novel paired-less Pax6.2 gene in lizard and in frog, as well as in zebrafish and in other teleosts. In zebrafish two full-length Pax6 duplicates were known previously, originating from the fish-specific genome duplication (FSGD) and expressed in divergent patterns due to paralog-specific loss of cis-elements. We show that teleosts other than zebrafish also maintain duplicate full-length Pax6 loci, but differences in gene and regulatory domain structure suggest that these Pax6 paralogs originate from a more ancient duplication event and are hence renamed as Pax6.3. Sequence comparisons between mammalian and elephant shark Pax6.1 loci highlight the presence of short- and long-range conserved noncoding elements (CNEs). Functional analysis demonstrates the ancient role of long-range enhancers for Pax6 transcription. We show that the paired-less Pax6.2 ortholog in zebrafish is expressed specifically in the developing retina. Transgenic analysis of elephant shark and zebrafish Pax6.2 CNEs with homology to the mouse NRE/Pα internal promoter revealed highly specific retinal expression. Finally, morpholino depletion of zebrafish Pax6.2 resulted in a "small eye" phenotype, supporting a role in retinal development. In summary, our study reveals that the pleiotropic functions of Pax6 in vertebrates are served by a divergent family of Pax6 genes, forged by ancient duplication events and by independent, lineage-specific gene losses
    corecore