52 research outputs found

    Do dividends signal future earnings in the Nordic stock markets?

    Get PDF
    We study the informational content of dividends on three Nordic civil law markets, where other simultaneous but blurring motives for dividends may be weaker. Using aggregate data on real earnings per share and payout ratios, long time series from 1969 to 2010, and methodologies which address problems of endogeneity, non-stationarity and autocorrelation (including a Vector Error Correction Model approach), we find evidence on dividend signaling in Nordic markets. However, we also find heterogeneity in the relationship between dividends and earnings on markets similar in many respects, suggesting that even small variations in the institutional surroundings may be important for the results

    A Survival Analysis of Islamic and Conventional Banks

    Get PDF
    Are Islamic banks inherently more stable than conventional banks? We address this question by applying a survival analysis based on the Cox proportional hazard model to a comprehensive sample of 421 banks in 20 Middle and Far Eastern countries from 1995 to 2010. By comparing the failure risk for both bank types, we find that Islamic banks have a significantly lower risk of failure than that of their conventional peers. This lower risk is based both unconditionally and conditionally on bank-specific (microeconomic) variables as well as macroeconomic and market structure variables. Our findings indicate that the design and implementation of early warning systems for bank failure should recognize the distinct risk profiles of the two bank types

    Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy

    Get PDF
    Heritable changes in gene expression that are not based upon alterations in the DNA sequence are defined as epigenetics. The most common mechanisms of epigenetic regulation are the methylation of CpG islands within the DNA and the modification of amino acids in the N-terminal histone tails. In the last years, it became evident that the onset of cancer and its progression may not occur only due to genetic mutations but also because of changes in the patterns of epigenetic modifications. In contrast to genetic mutations, which are almost impossible to reverse, epigenetic changes are potentially reversible. This implies that they are amenable to pharmacological interventions. Therefore, a lot of work in recent years has focussed on the development of small molecule enzyme inhibitors like DNA-methyltransferase inhibitors or inhibitors of histone-modifying enzymes. These may reverse misregulated epigenetic states and be implemented in the treatment of cancer or other diseases, e.g., neurological disorders. Today, several epigenetic drugs are already approved by the FDA and the EMEA for cancer treatment and around ten histone deacetylase (HDAC) inhibitors are in clinical development. This review will give an update on recent clinical trials of the HDAC inhibitors used systemically that were reported in 2009 and 2010 and will present an overview of different biomarkers to monitor the biological effects

    Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies

    Get PDF
    The myeloproliferative neoplasms (MPNs) are a group of clonal hematological malignancies characterized by a hypercellular bone marrow and a tendency to develop thrombotic complications and to evolve to myelofibrosis and acute leukemia. Unlike chronic myelogenous leukemia, where a single disease-initiating genetic event has been identified, a more complicated series of genetic mutations appear to be responsible for the BCR-ABL1-negative MPNs which include polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Recent studies have revealed a number of epigenetic alterations that also likely contribute to disease pathogenesis and determine clinical outcome. Increasing evidence indicates that alterations in DNA methylation, histone modification, and microRNA expression patterns can collectively influence gene expression and potentially contribute to MPN pathogenesis. Examples include mutations in genes encoding proteins that modify chromatin structure (EZH2, ASXL1, IDH1/2, JAK2V617F, and IKZF1) as well as epigenetic modification of genes critical for cell proliferation and survival (suppressors of cytokine signaling, polycythemia rubra vera-1, CXC chemokine receptor 4, and histone deacetylase (HDAC)). These epigenetic lesions serve as novel targets for experimental therapeutic interventions. Clinical trials are currently underway evaluating HDAC inhibitors and DNA methyltransferase inhibitors for the treatment of patients with MPNs
    corecore