1,232 research outputs found

    Profiling strugglers in a graduate-entry medicine course at Nottingham: a retrospective case study

    Get PDF
    Background 10-15% of students struggle at some point in their medicine course. Risk factors include weaker academic qualifications, male gender, mental illness, UK ethnic minority status, and poor study skills. Recent research on an undergraduate medicine course provided a toolkit to aid early identification of students likely to struggle, who can be targeted by established support and study interventions. The present study sought to extend this work by investigating the number and characteristics of strugglers on a graduate-entry medicine (GEM) programme. Methods A retrospective study of four GEM entry cohorts (2003–6) was carried out. All students who had demonstrated unsatisfactory progress or left prematurely were included. Any information about academic, administrative, personal, or social difficulties, were extracted from their course progress files into a customised database and examined. Results 362 students were admitted to the course, and 53 (14.6%) were identified for the study, of whom 15 (4.1%) did not complete the course. Students in the study group differed from the others in having a higher proportion of 2ii first degrees, and scoring less well on GAMSAT, an aptitude test used for admission. Within the study group, it proved possible to categorise students into the same groups previously reported (struggler throughout, pre-clinical struggler, clinical struggler, health-related struggler, borderline struggler) and to identify the majority using a number of flags for early difficulties. These flags included: missed attendance, unsatisfactory attitude or behaviour, health problems, social/family problems, failure to complete immunity status checks, and attendance at academic progress committee. Conclusions Problems encountered in a graduate-entry medicine course were comparable to those reported in a corresponding undergraduate programme. A toolkit of academic and non-academic flags of difficulty can be used for early identification of many who will struggle, and could be used to target appropriate support and interventions

    Does undertaking an intercalated BSc influence first clinical year exam results at a London medical school?

    Get PDF
    Background: Intercalated BScs (iBScs) are an optional part of the medical school curriculum in many Universities. Does undertaking an iBSc influence subsequent student performance? Previous studies addressing this question have been flawed by iBSc students being highly selected. This study looks at data from medical students where there is a compulsory iBSc for non-graduates. Our aim was to see whether there was any difference in performance between students who took an iBSc before or after their third year (first clinical year) exams.Methods: A multivariable analysis was performed to compare the third year results of students at one London medical school who had or had not completed their iBSc by the start of this year (n = 276). A general linear model was applied to adjust for differences between the two groups in terms of potential confounders (age, sex, nationality and baseline performance).Results: The results of third year summative exams for 276 students were analysed (184 students with an iBSc and 92 without). Unadjusted analysis showed students who took an iBSc before their third year achieved significantly higher end of year marks than those who did not with a mean score difference of 4.4 (0.9 to 7.9 95% CI, p = 0.01). (overall mean score 238.4 "completed iBSc" students versus 234.0 "not completed", range 145.2 - 272.3 out of 300). There was however a significant difference between the two groups in their prior second year exam marks with those choosing to intercalate before their third year having higher marks. Adjusting for this, the difference in overall exam scores was no longer significant with a mean score difference of 1.4 (-4.9 to +7.7 95% CI, p = 0.66). (overall mean score 238.0 "completed iBSc" students versus 236.5 "not completed").Conclusions: Once possible confounders are controlled for (age, sex, previous academic performance) undertaking an iBSc does not influence third year exam results. One explanation for this confounding in unadjusted results is that students who do better in their second year exams are more likely to take an iBSc before their third year

    Finding and Resolving Security Misusability with Misusability Cases

    Get PDF
    Although widely used for both security and usability concerns, scenarios used in security design may not necessarily inform the design of usability, and vice- versa. One way of using scenarios to bridge security and usability involves explicitly describing how design deci- sions can lead to users inadvertently exploiting vulnera- bilities to carry out their production tasks. This paper describes how misusability cases, scenarios that describe how design decisions may lead to usability problems sub- sequently leading to system misuse, address this problem. We describe the related work upon which misusability cases are based before presenting the approach, and illus- trating its application using a case study example. Finally, we describe some findings from this approach that further inform the design of usable and secure systems

    A novel approach to improve cardiac performance: cardiac myosin activators

    Get PDF
    Decreased systolic function is a central factor in the pathogenesis of heart failure, yet there are no safe medical therapies to improve cardiac function in patients. Currently available inotropes, such as dobutamine and milrinone, increase cardiac contractility at the expense of increased intracellular concentrations of calcium and cAMP, contributing to increased heart rate, hypotension, arrhythmias, and mortality. These adverse effects are inextricably linked to their inotropic mechanism of action. A new class of pharmacologic agents, cardiac myosin activators, directly targets the kinetics of the myosin head. In vitro studies have demonstrated that these agents increase the rate of effective myosin cross-bridge formation, increasing the duration and amount of myocyte contraction, and inhibit non-productive consumption of ATP, potentially improving myocyte energy utilization, with no effect on intracellular calcium or cAMP. Animal models have shown that this novel mechanism increases the systolic ejection time, resulting in improved stroke volume, fractional shortening, and hemodynamics with no effect on myocardial oxygen demand, culminating in significant increases in cardiac efficiency. A first-in-human study in healthy volunteers with the lead cardiac myosin activator, CK-1827452, as well as preliminary results from a study in patients with stable chronic heart failure, have extended these findings to humans, demonstrating significant increases in systolic ejection time, fractional shortening, stroke volume, and cardiac output. These studies suggest that cardiac myosin activators offer the promise of a safe and effective treatment for heart failure. A program of clinical studies are being planned to test whether CK-1827452 will fulfill that promise

    An off-board quantum point contact as a sensitive detector of cantilever motion

    Full text link
    Recent advances in the fabrication of microelectromechanical systems (MEMS) and their evolution into nanoelectromechanical systems (NEMS) have allowed researchers to measure extremely small forces, masses, and displacements. In particular, researchers have developed position transducers with resolution approaching the uncertainty limit set by quantum mechanics. The achievement of such resolution has implications not only for the detection of quantum behavior in mechanical systems, but also for a variety of other precision experiments including the bounding of deviations from Newtonian gravity at short distances and the measurement of single spins. Here we demonstrate the use of a quantum point contact (QPC) as a sensitive displacement detector capable of sensing the low-temperature thermal motion of a nearby micromechanical cantilever. Advantages of this approach include versatility due to its off-board design, compatibility with nanoscale oscillators, and, with further development, the potential to achieve quantum limited displacement detection.Comment: 5 pages, 5 figure
    corecore