890 research outputs found

    Calculating the large leakage flux of a breached hydrocarbon trap using geophysical interpretation of a paleo-gas-water contact

    Get PDF
    Integration of three-dimensional seismic and well data from the Northern Carnarvon Basin on the North West Shelf of Australia was used to assess the evidence for top seal breach of a paleo-gas accumulation. Several seismic indicators of vertical hydrocarbon leakage from the crest of the stratigraphic Mungaroo Trap point to a significant flux of gas within the past few hundred thousand years. Mapping of the top reservoir within the Triassic aged Mungaroo Formation revealed strong evidence for a paleo-gas-water contact (GWC), approximately 100 m down flank from the erosional crest of the trap. This contact conforms to structure and delimits an original volume of 1.1 trillion cubic feet (Tcf), based on reservoir property calibration from nearby wells. Mapping also revealed a present-day gas-water contact with a closed volume of 0.2 Tcf, 30 m down flank from the crest. This contact displays a discordant geometry indicative of a dynamic contact. The leakage zone is located directly above the crest of the structure. It is seismically well imaged and comprises seafloor pockmarks, shallow gas anomalies and gas hydrate anomalies. The presence of a leakage zone distributed vertically above a reservoir containing a present and paleo-GWC provides compelling evidence this trap has leaked by breaching of the top seal. Volumetric calculations using the two GWCs indicate that the Mungaroo Trap has been depleted by 0.9–1.1 Tcf. A dynamic-GWC indicates the leakage event within the trap has occurred recently. Analysis of dating of horizons correlated to the seafloor pockmarks places the leakage event at sometime within the last 300 Ka

    Late Cretaceous to Early Cenozoic initiation of rifting of the Windhoek Graben, Namibia

    Get PDF
    The Windhoek Graben is a north-south trending rift in central Namibia that forms a prominent topographic feature bisecting an area of plateau uplift. It occupies a potentially crucial role in the propagation of the Late Cenozoic Southwest African Rift system regarding a possible continuation to the west of the Eiseb Rift. It is an unusual example of intra-continental rifting because it has no significant sediment fill associated with the period of active rifting, and hence the timing of rift activity and its tectonic relevance has not hitherto been established. To constrain the age of the Windhoek Graben we examine its regional geomorphic context and its relationship to four sites of igneous activity in the central Namibian Highlands. Two of these consist of clusters of eroded phonolitic tholoid bodies that have yielded 40Ar/39Ar dates of 32 Ma and 52 Ma, respectively, that we use to bracket the age of formation of a prominent remnant land surface, termed here the P52 Surface. From previous mapping of older intrusive igneous bodies, we argue that an even older land surface is partially preserved on the highest features in the area, and this surface (termed PRS) defines an initial domally uplifted surface from which initial drainage radiated, and onto which the earliest volcanic products associated with the Graben were erupted. In particular, the strong similarity in dyke and fault orientations is used to argue for a causal connection between the earliest magmatic activity and the onset of rifting. Long range correlation of PRS into the adjacent Aranos Basin strongly suggests a Late Cretaceous age for this earliest magmatic activity and the onset of rifting, but we cannot exclude a younger origin, any time up to the Early Eocene

    Arrested versus active silica diagenesis reaction boundaries—A review of seismic diagnostic criteria

    Get PDF
    This paper evaluates previously proposed diagnostic criteria that can be used to determine whether or not there is active migration of the opal-A to opal-CT transition zone (TZA/CT). The criteria are based on the interpretation of 2D and 3D seismic surveys and are therefore geometrical. They involve an assessment of the relationship of the TZA/CT with polygonal fault systems, differential compaction structures and tectonic folds. The most robust evidence for an inactive ‘reaction front’ between opal-A and opal-CT bearing sediments is the discordance of the TZA/CT relative to present-day isotherms. Any of these may be persuasive as diagnostic criteria for the upward arrest of the diagenetic transformation at a regional scale, but actual truncation of the TZA/CT at the modern seabed is definitive for arrested diagenesis. This study argues that diagenetic assessment based solely on a single criterion independently is not reliable as an indicator for the current state of a silica transition. As a conclusion, the analysed seismic/structural criteria should be synthesised to provide a more credible interpretation for silica diagenesis. The use of modern 2D and 3D seismic data for the reconstruction of the diagenetic history of opaline silica bearing sediments offers a new approach to the study of silica diagenesis at a regional scale

    New synchronization method for <i>Plasmodium falciparum</i>

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;: Plasmodium falciparum is usually asynchronous during in vitro culture. Although various synchronization methods are available, they are not able to narrow the range of ages of parasites. A newly developed method is described that allows synchronization of parasites to produce cultures with an age range as low as 30 minutes. &lt;b&gt;Methods&lt;/b&gt;: Trophozoites and schizonts are enriched using Plasmion. The enriched late stage parasites are immobilized as a monolayer onto plastic Petri dishes using concanavalin A. Uninfected erythrocytes are placed onto the monolayer for a limited time period, during which time schizonts on the monolayer rupture and the released merozoites invade the fresh erythrocytes. The overlay is then taken off into a culture flask, resulting in a highly synchronized population of parasites. &lt;b&gt;Results&lt;/b&gt;: Plasmion treatment results in a 10- to 13-fold enrichment of late stage parasites. The monolayer method results in highly synchronized cultures of parasites where invasion has occurred within a very limited time window, which can be as low as 30 minutes. The method is simple, requiring no specialized equipment and relatively cheap reagents. &lt;b&gt;Conclusions&lt;/b&gt;: The new method for parasite synchronization results in highly synchronized populations of parasites, which will be useful for studies of the parasite asexual cell cycle

    How Plastic Can Phenotypic Plasticity Be? The Branching Coral Stylophora pistillata as a Model System

    Get PDF
    Phenotypic plasticity enables multicellular organisms to adjust morphologies and various life history traits to variable environmental challenges. Here, we elucidate fixed and plastic architectural rules for colony astogeny in multiple types of colonial ramets, propagated by cutting from genets of the branching coral Stylophora pistillata from Eilat, the Red Sea. We examined 16 morphometric parameters on 136 one-year old S. pistillata colonies (of seven genotypes), originating from small fragments belonging, each, to one of three single-branch types (single tips, start-up, and advanced bifurcating tips) or to structural preparative manipulations (representing a single or two growth axes). Experiments were guided by the rationale that in colonial forms, complexity of evolving phenotypic plasticity can be associated with a degree of structural modularity, where shapes are approached by erecting iterative growth patterns at different levels of coral-colony organization. Analyses revealed plastic morphometric characters at branch level, and predetermined morphometric traits at colony level (only single trait exhibited plasticity under extreme manipulation state). Therefore, under the experimental manipulations of this study, phenotypic plasticity in S. pistillata appears to be related to branch level of organization, whereas colony traits are controlled by predetermined genetic architectural rules. Each level of organization undergoes its own mode of astogeny. However, depending on the original ramet structure, the spherical 3-D colonial architecture in this species is orchestrated and assembled by both developmental trajectories at the branch level, and traits at the colony level of organization. In nature, branching colonial forms are often subjected to harsh environmental conditions that cause fragmentation of colony into ramets of different sizes and structures. Developmental traits that are plastic, responding to fragment structure and are not predetermine in controlling astogeny, allow formation of species-specific architecture product through integrated but variable developmental routes. This adaptive plasticity or regeneration is an efficient mechanism by which isolated fragments of branching coral species cope with external environmental forces
    • …
    corecore