69 research outputs found

    Immediate response of myocardium to pressure overload includes transient regulation of genes associated with mitochondrial bioenergetics and calcium availability

    Get PDF
    Ventricular hypertrophy is one of the major myocardial responses to pressure overload (PO). Most studies on early myocardial response focus on the days or even weeks after induction of hypertrophic stimuli. Since mechanotransduction pathways are immediately activated in hearts undergoing increased work load, it is reasonable to infer that the myocardial gene program may be regulated in the first few hours. In the present study, we monitored the expression of some genes previously described in the context of myocardial hypertrophic growth by using the Northern blot technique, to estimate the mRNA content of selected genes in rat myocardium for the periods 1, 3, 6, 12 and 48 h after PO stimuli. Results revealed an immediate switch in the expression of genes encoding alpha and beta isoforms of myosin heavy chain, and up-regulation of the cardiac isoform of alpha actin. We also detected transitory gene regulation as the increase in mitochondrial cytochrome c oxidase 1 gene expression, parallel to down-regulation of genes encoding sarco(endo)plasmic reticulum Ca+2 ATPase and sodium-calcium exchanger. Taken together, these results indicate that initial myocardial responses to increased work load include alterations in the contractile properties of sarcomeres and transitory adjustment of mitochondrial bioenergetics and calcium availability

    Faecal calprotectin concentrations in apparently healthy children aged 0-12 years in urban Kampala, Uganda: a community-based survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calprotectin is a calcium and zinc binding protein, abundant in neutrophils and is extremely stable in faeces. Faecal calprotectin is used as a non-specific marker for gastrointestinal inflammation. It has a good diagnostic precision to distinguish between irritable bowel syndrome and inflammatory bowel disease. Studies have established normal concentrations in healthy children; all these studies have been performed in high-income countries. The objective of this study was to determine the concentration of faecal calprotectin in apparently healthy children aged 0-12 years in urban Kampala, Uganda.</p> <p>Method</p> <p>We tested 302 apparently healthy children aged, age 0-12 years (162 female, 140 male) in urban Kampala, Uganda. The children were recruited consecutively by door-to-door visits. Faecal calprotectin was analyzed using a quantitative enzyme-linked immunosorbent assay. Faeces were also tested for <it>Helicobacter pylori (H. pylori) </it>antigen, for growth of enteropathogens and microscopy was performed to assess protozoa and helminths. A short standardized interview with socio-demographic information and medical history was obtained to assess health status of the children.</p> <p>Results</p> <p>In the different age groups the median faecal calprotectin concentrations were 249 mg/kg in 0 < 1 year (n = 54), 75 mg/kg in 1 < 4 years (n = 89) and 28 mg/kg in 4 < 12 years (n = 159). There was no significant difference in faecal calprotectin concentrations and education of female caretaker, wealth index, gender, habits of using mosquito nets, being colonized with <it>H. pylori </it>or having other pathogens in the stool.</p> <p>Conclusion</p> <p>Concentrations of faecal calprotectin among healthy children, living in urban Ugandan, a low-income country, are comparable to those in healthy children living in high-income countries. In children older than 4 years, the faecal calprotectin concentration is low. In healthy infants faecal calprotectin is high. The suggested cut-off concentrations in the literature can be used in apparently healthy Ugandan children. This finding also shows that healthy children living under poor circumstances do not have a constant inflammation in the gut. We see an opportunity to use this relatively inexpensive test for further understanding and investigations of gut inflammation in children living in low-income countries.</p

    Hypertrophic Stimulation Increases β-actin Dynamics in Adult Feline Cardiomyocytes

    Get PDF
    The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While α-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of β-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, β-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO) model, we measured the level and distribution of β-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of β-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET) or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin) of β-actin. To determine the localization and dynamics of β-actin, we adenovirally expressed GFP-tagged β-actin in isolated adult cardiomyocytes. The ectopically expressed β-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP) measurements of β-actin dynamics revealed that β-actin at the Z-discs is constantly being exchanged with β-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while β-actin overexpression improved cardiomyocyte contractility, immunoneutralization of β-actin resulted in a reduced contractility suggesting that β-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of β-actin in the adult cardiomyocyte and reinforce its usefulness in measuring cardiac cytoskeletal rearrangement during hypertrophic stimulation

    A Functional Misexpression Screen Uncovers a Role for Enabled in Progressive Neurodegeneration

    Get PDF
    Drosophila is a well-established model to study the molecular basis of neurodegenerative diseases. We carried out a misexpression screen to identify genes involved in neurodegeneration examining locomotor behavior in young and aged flies. We hypothesized that a progressive loss of rhythmic activity could reveal novel genes involved in neurodegenerative mechanisms. One of the interesting candidates showing progressive arrhythmicity has reduced enabled (ena) levels. ena down-regulation gave rise to progressive vacuolization in specific regions of the adult brain. Abnormal staining of pre-synaptic markers such as cystein string protein (CSP) suggest that axonal transport could underlie the neurodegeneration observed in the mutant. Reduced ena levels correlated with increased apoptosis, which could be rescued in the presence of p35, a general Caspase inhibitor. Thus, this mutant recapitulates two important features of human neurodegenerative diseases, i.e., vulnerability of certain neuronal populations and progressive degeneration, offering a unique scenario in which to unravel the specific mechanisms in an easily tractable organism
    • …
    corecore