1,313 research outputs found

    Computer Aided Identification of Small Molecules Disrupting uPAR/α5β1- Integrin Interaction: A New Paradigm for Metastasis Prevention

    Get PDF
    Disseminated dormant cancer cells can resume growth and eventually form overt metastases, but the underlying molecular mechanism responsible for this change remains obscure. We previously established that cell surface interaction between urokinase receptor (uPAR) and alpha5beta1-integrin initiates a sequel of events, involving MAPK-ERK activation that culminates in progressive cancer growth. We also identified the site on uPAR that binds alpha5beta1-integrin. Disruption of uPAR/integrin interaction blocks ERK activation and forces cancer cells into dormancy.Using a target structure guided computation docking we identified 68 compounds from a diversity library of 13,000 small molecules that were predicted to interact with a previously identified integrin-binding site on uPAR. Of these 68 chemical hits, ten inhibited ERK activation in a cellular assay and of those, 2 compounds, 2-(Pyridin-2-ylamino)-quinolin-8-ol and, 2,2'-(methylimino)di (8-quinolinol) inhibited ERK activation by disrupting the uPAR/integrins interaction. These two compounds, when applied in vivo, inhibited ERK activity and tumor growth and blocked metastases of a model head and neck carcinoma.We showed that interaction between two large proteins (uPAR and alpha5beta1-integrin) can be disrupted by a small molecule leading to profound downstream effects. Because this interaction occurs in cells with high uPAR expression, a property almost exclusive to cancer cells, we expect a new therapy based on these lead compounds to be cancer cell specific and minimally toxic. This treatment, rather than killing disseminated metastatic cells, should induce a protracted state of dormancy and prevent overt metastases

    Combinatorial RNA Design: Designability and Structure-Approximating Algorithm

    Get PDF
    In this work, we consider the Combinatorial RNA Design problem, a minimal instance of the RNA design problem which aims at finding a sequence that admits a given target as its unique base pair maximizing structure. We provide complete characterizations for the structures that can be designed using restricted alphabets. Under a classic four-letter alphabet, we provide a complete characterization of designable structures without unpaired bases. When unpaired bases are allowed, we provide partial characterizations for classes of designable/undesignable structures, and show that the class of designable structures is closed under the stutter operation. Membership of a given structure to any of the classes can be tested in linear time and, for positive instances, a solution can be found in linear time. Finally, we consider a structure-approximating version of the problem that allows to extend bands (helices) and, assuming that the input structure avoids two motifs, we provide a linear-time algorithm that produces a designable structure with at most twice more base pairs than the input structure.Comment: CPM - 26th Annual Symposium on Combinatorial Pattern Matching, Jun 2015, Ischia Island, Italy. LNCS, 201

    Analysis of Marker-Defined HNSCC Subpopulations Reveals a Dynamic Regulation of Tumor Initiating Properties

    Get PDF
    Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49fhigh/ALDH1A1high/H3K4/K27me3low subpopulation (CD49f+) of tumor cells. A strikingly similar CD49fhigh/H3K27me3low subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49fhigh/ALDHhigh, label retaining cells (LRC) proliferated immediately in vivo, with time the CD49flow/ALDHlow, non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49fhigh/ALDHhigh, label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f− cells can “reprogram” and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a “moving target” and their eradication might require more persistent strategies

    Tumour dormancy in breast cancer: an update

    Get PDF
    Delayed recurrences, common in breast cancer, are well explained by the concept of tumour dormancy. Numerous publications describe clinical times to disease recurrence or death, using mathematical approaches to infer mechanisms responsible for delayed recurrences. However, most of the clinical literature discussing tumour dormancy uses data from over a half century ago and much has since changed. This review explores how current breast cancer treatment could change our understanding of the biology of breast cancer tumour dormancy, and summarizes relevant experimental models to date. Current knowledge gaps are highlighted and potential areas of future research are identified

    On the theory of tumor self-seeding: implications for metastasis progression in humans

    Get PDF
    Metastasis remains the leading cause of death among cancer patients because few effective treatment options are available. A recent paper proposes a new twist on metastasis. The paper shows that circulating tumor cells can return to the primary tumor, a process termed tumor self-seeding or cross-seeding, and that this helps breeding tumor cells that give rise to aggressive metastatic variants. A viewpoint presented here addresses the implications of these studies for human cancer metastasis

    Components of acquisition-to-acquisition variance in continuous arterial spin labelling (CASL) imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Images of perfusion estimates obtained with the continuous arterial spin labelling technique are characterized by variation between single acquisitions. Little is known about the spatial determinants of this variation during the acquisition process and their impact on voxel-by-voxel estimates of effects.</p> <p>Results</p> <p>We show here that the spatial patterns of covariance between voxels arising during the acquisition of these images uncover distinct mechanisms through which this variance arises: through variation in global perfusion levels; through the action of large vessels and other, less well characterized, large anatomical structures; and through the effect of noisy areas such as the edges of the brain.</p> <p>Conclusions</p> <p>Knowledge of these covariance patterns is important to experimenters for a correct interpretation of findings, especially for studies where relatively few acquisitions are made.</p

    Environmental drivers of distribution and reef development of the Mediterranean coral Cladocora caespitosa

    Get PDF
    Cladocora caespitosa is the only Mediterranean scleractinian similar to tropical reef-building corals. While this species is part of the recent fossil history of the Mediterranean Sea, it is currently considered endangered due to its decline during the last decades. Environmental factors affecting the distribution and persistence of extensive bank reefs of this endemic species across its whole geographic range are poorly understood. In this study, we examined the environmental response of C. caespitosa and its main types of assemblages using ecological niche modeling and ordination analysis. We also predicted other suitable areas for the occurrence of the species and assessed the conservation effectiveness of Mediterranean marine protected areas (MPAs) for this coral. We found that phosphate concentration and wave height were factors affecting both the occurrence of this versatile species and the distribution of its extensive bioconstructions in the Mediterranean Sea. A set of factors (diffuse attenuation coefficient, calcite and nitrate concentrations, mean wave height, sea surface temperature, and shape of the coast) likely act as environmental barriers preventing the species from expansion to the Atlantic Ocean and the Black Sea. Uncertainties in our large-scale statistical results and departures from previous physiological and ecological studies are also discussed under an integrative perspective. This study reveals that Mediterranean MPAs encompass eight of the ten banks and 16 of the 21 beds of C. caespitosa. Preservation of water clarity by avoiding phosphate discharges may improve the protection of this emblematic species.Spanish Ministry of Economy and Competitiveness [CTM2014-57949-R]info:eu-repo/semantics/publishedVersio

    Factors associated with problem drinking among women employed in food and recreational facilities in northern Tanzania.

    Get PDF
    BACKGROUND: There is growing evidence that alcohol consumption is associated with increased risk of HIV infection. To determine factors associated with problem drinking, we analyzed data collected in two prospective cohorts of at-risk female food and recreational facility workers in northern Tanzania. METHODS: We enrolled HIV seronegative women aged 18-44 years and employed in the towns of Geita, Kahama, Moshi, and Shinyanga. At enrolment, women were interviewed to obtain information about alcohol use, using CAGE and AUDIT screening scales, and risk factors for HIV infection. Blood and genital samples were collected for detection of HIV and sexually transmitted infections (STIs). We characterized alcohol use, concordance, and agreement of the scales, and examined the associations between characteristics of participants and problem drinking as defined by both scales using logistic regression. Lastly, we assessed problem drinking as a risk factor for recent sexual behavior and prevalent STIs. RESULTS: Among enrollees, 68% women reported ever drinking alcohol; of these 76% reported drinking alcohol in the past 12 months. The prevalence of problem drinking was 20% using CAGE and 13% using AUDIT. Overall concordance between the scales was 75.0% with a Kappa statistic of 0.58. After adjusting for age, independent factors associated with problem drinking, on both scales, were marital status, occupation, facility type, increasing number of lifetime sexual partners, and transactional sex in the past 12 months. In addition, women who were problem drinkers on either scale were more likely to report having ≥ 1 sexual partner (CAGE: aOR = 1.56, 95% confidence interval, CI: 1.10-2.23; AUDIT: aOR = 2.00, 95% CI: 1.34-3.00) and transactional sex (CAGE: aOR = 1.79, 95% CI: 1.26-2.56; AUDIT: aOR = 1.51, 95% CI: 1.04-2.18), in the past 3 months. CONCLUSION: These findings suggest that interventions to reduce problem drinking in this population may reduce high-risk sexual behaviors and contribute in lowering the risk of HIV infection

    Therapeutic Rescue of Misfolded Mutants: Validation of Primary High Throughput Screens for Identification of Pharmacoperone Drugs

    Get PDF
    Functional rescue of misfolded mutant receptors by small non-peptide molecules has been demonstrated. These small, target-specific molecules (pharmacological chaperones or "pharmacoperones") serve as molecular templates, promote correct folding and allow otherwise misfolded mutants to pass the scrutiny of the cellular quality control system (QCS) and be expressed at the plasma membrane (PM) where they function similarly to wild type (WT) proteins. In the case of the gonadotropin releasing hormone receptor (GnRHR), drugs that rescue one mutant typically rescue many mutants, even if the mutations are located at distant sites (extracellular loops, intracellular loops, transmembrane helices). This increases the value of these drugs. These drugs are typically identified, post hoc, from "hits" in screens designed to detect antagonists or agonists. The therapeutic utility of pharmacoperones has been limited due to the absence of screens that enable identification of pharmacoperones per se.We describe a generalizable primary screening approach for pharmacoperone drugs based on measurement of gain of activity in stable HeLa cells stably expressing the mutants of two different model G-protein coupled receptors (GPCRs) (hGnRHR[E(90)K] or hV2R[L(83)Q]). These cells turn off expression of the receptor mutant gene of interest in the presence of tetracycline and its analogs, which provides a convenient means to identify false positives.The methods described and characterized here provide the basis of novel primary screens for pharmacoperones that detect drugs that rescue GPCR mutants of specific receptors. This approach will identify structures that would have been missed in screens that were designed to select only agonists or antagonists. Non-antagonistic pharmacoperones have a therapeutic advantage since they will not compete for endogenous agonists and may not have to be washed out once rescue has occurred and before activation by endogenous or exogenous agonists
    corecore