479 research outputs found

    An intra-vehicular wireless sensor network based on Android mobile devices and bluetooth low energy

    Get PDF
    This chapter presents the development and test of an intra-vehicular wireless sensor network (IVWSN), based on Bluetooth Low Energy (BLE), designed to present to the driver, in real-time, information collected from multiple sensors distributed inside of the car, using a human-machine interface (HMI) implemented on an Android smartphone. The architecture of the implemented BLE network is composed by the smartphone, which has the role of central station, and two BLE modules (peripheral stations) based on the CC2540 system-on-chip (SoC), which collect relevant sensor information from the battery system and the traction system of a plug-in electric car. Results based on an experimental performance evaluation of the wireless network show that the network is able to satisfy the application requirements, as long as the network parameters are properly configured taking into account the peculiarities of the BLE data transfer modes and the observed limitations of the BLE platform used in the implementation of the IVWSN.This work is supported by FCT with the reference project UID/EEA/04436/2013, COMPETE 2020 with the code POCI-01-0145-FEDER-006941

    Home energy monitoring system towards smart control of energy consumption

    Get PDF
    The need to manage, control and reduce energy consumption has led researchers to propose reliable solutions based on new technologies to achieve this goal. Our contribution in this subject is presented in this paper and consists of the design, implementation and testing of a home energy monitoring system. The presented system is dedicated for residential customers and allows the monitoring and control of the energy consumption, based on distributed and central processing. The system includes distributed monitoring devices, a gateway and a graphical user interface (GUI). To connect the all parts we use a hybrid wireless solution based on the Wi-Fi and Bluetooth Low Energy standards. We present the design and the implementation of the monitoring device hardware as well as the embedded software used to calculate the electrical quantities. We also present the calibration methodology used to eliminate gain and offset errors. In terms of performance test results, we have achieved voltage measurement accuracy below 0.2% and current measurement accuracy below 0.5%. A GUI was also developed for the user to visualize and control remotely the household appliances.This work is supported by FCT with the reference project UID/EEA/04436/2013, COMPETE 2020 with the code POCI-01-0145-FEDER-006941

    Cluster of Symptomatic Graft-to-Host Transmission of Herpes Simplex Virus Type 1 in an Endothelial Keratoplasty Setting

    Get PDF
    PURPOSE: Descemet's membrane endothelial keratoplasty (DMEK) is becoming the gold standard to treat corneal endothelial dysfunctions worldwide. Compared with conventional penetrating keratoplasty, infectious complications after DMEK are ill defined. We describe the clinical picture of 2 DMEK recipients, operated on the same day and in the same clinic, who developed atypical herpes simplex virus type 1 (HSV-1) infection in the transplant recipient eye within days post-DMEK. Because recipients received cornea tissue from 2 different donors prepared by the same eye bank, the likelihood of a common HSV-1 source was determined. DESIGN: Case series. PARTICIPANTS: Two DMEK recipients who developed atypical intraocular HSV-1 disease shortly after surgery and surplus cornea specimens of 6 donors. METHODS: Surplus cornea donor (pre-DMEK cornea remnants and conditioned cornea storage and transport media) and recipient samples (post-DMEK aqueous humor) were assayed for HSV-1 DNA and infectious virus by real-time polymerase chain reaction (RT-PCR) and cell culture, respectively. Target-enriched whole viral genome sequencing was performed on HSV-1 DNA–positive ocular specimens. MAIN OUTCOMES MEASURES: Clinical picture of atypical intraocular HSV-1 infection post-DMEK and presence and homology of HSV-1 genomes between ocular specimens of DMEK donors and recipients. RESULTS: Herpes simplex virus type 1 DNA was detected in aqueous humor and donor cornea specimens of both DMEK cases, but not in the cornea remnants of 6 randomly selected donors processed by the same eye bank. Infectious HSV-1 was isolated from the cornea remnant and corresponding culture medium of 1 cornea donor. Notably, whole-genome sequencing of virus DNA-positive specimens demonstrated exceptionally high genetic similarity between HSV-1 strains in recipient and donor specimens of both DMEK cases. CONCLUSIONS: Data indicate cross-contamination of cornea grafts during DMEK preparation with subsequent graft-to-host HSV-1 transmission that caused atypical sight-threatening herpetic eye disease shortly after DMEK. Ophthalmologists should be aware that HSV-1 transmission by DMEK is possible and can lead to atypical ocular disease, a condition that can easily be prevented by taking appropriate technical and clinical measures at both eye bank and surgical levels

    Performance evaluation of bluetooth low energy for high data rate body area networks

    Get PDF
    Bluetooth Low Energy (BLE) is a promising wireless network technology, in the context of body area network (BAN) applications, to provide the required quality of service (QoS) support concerning the communication between sensor nodes placed on a user’s body and a personal device, such as a smartphone. Most previous BLE performance studies in the literature have focused primarily in networks with a single slave (point-to-point link) or traffic scenarios with relatively low data rate. However, many BAN sensors generate high data rate traffic, and several sensor nodes (slaves) may be actively sending data in the same BAN. Therefore, this work focuses on the evaluation of the suitability of BLE mainly under these conditions. Results show that, for the same traffic, the BLE protocol presents lower energy consumption and supports more sensor nodes than an alternative IEEE 802.15.4-based protocol. This study also identifies and characterizes some implementation constraints on the tested platforms that impose limits on the achievable performance.This work has been supported by FCT (Fundação para a Ciência e Tecnologia) in the scope of the projects UID/EEA/04436/2013 and UID/CTM/50025/2013, and by FEDER funds through the COMPETE 2020 Programme

    Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery

    Get PDF
    Circulating O-glycoproteins shed from cancer cells represent important serum biomarkers for diagnostic and prognostic purposes. We have recently shown that selective detection of cancer-associated aberrant glycoforms of circulating O-glycoprotein biomarkers can increase specificity of cancer biomarker assays. However, the current knowledge of secreted and circulating O-glycoproteins is limited. Here, we used the COSMC KO "Simple- Cell" (SC) strategy to characterize the O-glycoproteome of two gastric cancer SimpleCell lines (AGS, MKN45) as well as a gastric cell line (KATO III) which naturally expresses at least partially truncated O-glycans. Overall, we identified 499 O-glycoproteins and 1236 O-glycosites in gastric cancer SimpleCells, and a total 47 O-glycoproteins and 73 O-glycosites in the KATO III cell line. We next modified the glycoproteomic strategy to apply it to pools of sera from gastric cancer and healthy individuals to identify circulating O-glycoproteins with the STn glycoform. We identified 37 O-glycoproteins in the pool of cancer sera, and only nine of these were also found in sera from healthy individuals. Two identified candidate O-glycoprotein biomarkers (CD44 and GalNAc-T5) circulating with the STn glycoform were further validated as being expressed in gastric cancer tissue. A proximity ligation assay was used to show that CD44 was expressed with the STn glycoform in gastric cancer tissues. The study provides a discovery strategy for aberrantly glycosylated O-glycoproteins and a set of O-glycoprotein candidates with biomarker potential in gastric cancer.This work was supported by The Danish Research Councils, The Mizutani Foundation, The Danish National Research Foundation (DNRF107) and Fundacão para a Ciência e a Tecnologia (FCT) and COMPETE (Programa Operacional Temático Factores de Competitividade, comparticipado pelo fundo comunitário europeu FEDER) in the framework of the projects: PTDC/BBB-EBI/0786/2012; EXPL/CTM-BIO/0762/2013. Grants were received from FCT (SFRH/BD/73717/2010 to DC), (SFRH/BPD/75871/2011 to AM), (SFRH/BPD/96510/2013 to CG) and (SFRH/BPD/66288/2009 to JAF). IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education, and is partially supported by FCT

    Glycomic analysis of gastric carcinoma cells discloses glycans as modulators of RON receptor tyrosine kinase activation in cancer

    Get PDF
    Background Terminal a2-3 and a2-6 sialylation of glycans precludes further chain elongation, leading to the biosynthesis of cancer relevant epitopes such as sialyl-Lewis X (SLe X ). SLe X overexpression is associated with tumor aggressive phenotype and patients' poor prognosis. Methods MKN45 gastric carcinoma cells transfected with the sialyltransferase ST3GAL4 were established as a model overexpressing sialylated terminal glycans. We have evaluated at the structural level the glycome and the sialoproteome of this gastric cancer cell line applying liquid chromatography and mass spectrometry. We further validated an identified target expression by proximity ligation assay in gastric tumors. Results Our results showed that ST3GAL4 overexpression leads to several glycosylation alterations, including reduced O-glycan extension and decreased bisected and increased branched N-glycans. A shift from a2-6 towards a2-3 linked sialylated N-glycans was also observed. Sialoproteomic analysis further identified 47 proteins with significantly increased sialylated N-glycans. These included integrins, insulin receptor, carcinoembryonic antigens and RON receptor tyrosine kinase, which are proteins known to be key players in malignancy. Further analysis of RON confirmed its modification with SLe X and the concomitant activation. SLe X and RON co-expression was validated in gastric tumors. Conclusion The overexpression of ST3GAL4 interferes with the overall glycophenotype of cancer cells affecting a multitude of key proteins involved in malignancy. Aberrant glycosylation of the RON receptor was shown as an alternative mechanism of oncogenic activation. General significance This study provides novel targets and points to an integrative tumor glycomic/proteomic-profiling for gastric cancer patients' stratification. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.We acknowledge the support from the European Union, Seventh Framework Programme, Gastric Glyco Explorer initial training network: grant number 316929. IPATIMUP integrates the i3S Research Unit, which is partially supported by FCT, the Portuguese Foundation for Science and Technology. This work is funded by FEDER funds through the Operational Programme for Competitiveness Factors-COMPETE (FCOMP-01-0124-FEDER028188) and National Funds through the FCT-Foundation for Science and Technology, under the projects: PEst-C/SAU/LA0003/2013, PTDC/BBB-EBI/0786/2012, and PTDC/BBB-EBI/0567/2014 (to CAR). This work was also supported by"Glycoproteomics" project grant number PCIG09-GA-2011-293847(to DK) and the Danish Natural Science Research Council and a generous grant from the VILLUM Foundation to the VILLUM Center for Bioanalytical Sciences at the University of Southern Denmark (to MRL). Grants were received from FCT, POPH (Programa Operacional Potencial Humano) and FSE (Fundo Social Europeu): SFRH/BPD/75871/2011 to AM; SFRH/BPD/111048/2015 to JAF; SFRH/BPD/96510/2013 to CG. The UPLC instrument was obtained with a grant from the Ingabritt and Arne Lundbergs Research Foundation (to NK). C.J. was supported by the Knut and Alice Wallenberg Foundation. The mass spectrometer (LTQ) was obtained by a grant from the Swedish Research Council (342-2004-4434) (to NK)

    A donor-specific epigenetic classifier for acute graft-versus-host disease severity in hematopoietic stem cell

    Get PDF
    Background Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for many hematological conditions. Acute graft-versus-host disease (aGVHD) is a prevalent immune-mediated complication following HSCT. Current diagnostic biomarkers that correlate with aGVHD severity, progression, and therapy response in graft recipients are insufficient. Here, we investigated whether epigenetic marks measured in peripheral blood of healthy graft donors stratify aGVHD severity in human leukocyte antigen (HLA)-matched sibling recipients prior to T cell-depleted HSCT. Methods We measured DNA methylation levels genome-wide at single-nucleotide resolution in peripheral blood of 85 HSCT donors, matched to recipients with various transplant outcomes, with Illumina Infinium HumanMethylation450 BeadChips. Results Using genome-wide DNA methylation profiling, we showed that epigenetic signatures underlying aGVHD severity in recipients correspond to immune pathways relevant to aGVHD etiology. We discovered 31 DNA methylation marks in donors that associated with aGVHD severity status in recipients, and demonstrated strong predictive performance of these markers in internal cross-validation experiments (AUC = 0.98, 95 % CI = 0.96–0.99). We replicated the top-ranked CpG classifier using an alternative, clinical DNA methylation assay (P = 0.039). In an independent cohort of 32 HSCT donors, we demonstrated the utility of the epigenetic classifier in the context of a T cell-replete conditioning regimen (P = 0.050). Conclusions Our findings suggest that epigenetic typing of HSCT donors in a clinical setting may be used in conjunction with HLA genotyping to inform both donor selection and transplantation strategy, with the ultimate aim of improving patient outcome

    HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis

    Get PDF
    Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis
    • …
    corecore