88 research outputs found

    Mycosphaerella podagrariae - a necrotrophic phytopathogen forming a special cellular interaction with its host Aegopodium podagraria

    Get PDF
    We present a new kind of cellular interaction found between Mycosphaerella podagrariae and Aegopodium podagraria, which is remarkably different to the interaction type of the obligate biotrophic fungus Cymadothea trifolii, another member of the Mycosphaerellaceae (Capnodiales, Dothideomycetes, Ascomycota) which we have described earlier. Observations are based on both conventional and cryofixed material and show that some features of this particular interaction are better discernable after chemical fixation. We were also able to generate sequences for nuclear ribosomal DNA (complete SSU, 5.8 S and flanking ITS-regions, D1–D3 region of the LSU) confirming the position of M. podagrariae within Mycosphaerellacea

    Cymadothea trifolii, an obligate biotrophic leaf parasite of Trifolium, belongs to Mycosphaerellaceae as shown by nuclear ribosomal DNA analyses

    Get PDF
    The ascomycete Cymadothea trifolii, a member of the Dothideomycetes, is unique among obligate biotrophic fungi in its capability to only partially degrade the host cell wall and in forming an astonishingly intricate interaction apparatus (IA) in its own hyphae, while the attacked host plant cell is triggered to produce a membranous bubble opposite the IA. However, no sequence data are currently available for this species. Based on molecular phylogenetic results obtained from complete SSU and partial LSU data, we show that the genus Cymadothea belongs to the Mycosphaerellaceae (Capnodiales, Dothideomycetes). This is the first report of sequences obtained for an obligate biotrophic member of Mycosphaerellaceae

    Soliton solutions in an effective action for SU(2) Yang-Mills theory: including effects of higher-derivative term

    Full text link
    The Skyrme-Faddeev-Niemi (SFN) model which is an O(3) σ\sigma model in three dimensional space upto fourth-order in the first derivative is regarded as a low-energy effective theory of SU(2) Yang-Mills theory. One can show from the Wilsonian renormalization group argument that the effective action of Yang-Mills theory recovers the SFN in the infrared region. However, the thoery contains an additional fourth-order term which destabilizes the soliton solution. In this paper, we derive the second derivative term perturbatively and show that the SFN model with the second derivative term possesses soliton solutions.Comment: 7 pages, 3 figure

    Dynamics of Neural Responses in Ferret Primary Auditory Cortex: I. Spectro-Temporal Response Field Characterization by Dynamic Ripple Spectra

    Get PDF
    To understand the neural representation of broadband, dynamic sounds in Primary Auditory Cortex (AI), we characterize responses using the Spectro-Temporal Response Field (STRF). The STRF describes and predicts the linear response of neurons to sounds with rich spectro-temporal envelopes. It is calculated here from the responses to elementary "ripples," a family of sounds with drifting, sinusoidal, spectral envelopes--the complex spectro-temporal envelope of any broadband, dynamic sound can expressed as the linear sum of individual ripples. The collection of responses to all elementary ripples is the spectro-temporal transfer function. Previous experiments using ripples with downward drifting spectra suggested that the transfer function is separable, i.e., it is reducible into a product of purely temporal and purely spectral functions. Here we compare the responses to upward and downward drifting ripples, assuming separability within each direction, to determine if the total bi-directional transfer function is fully separable. In general, the combined transfer function for two directions is not symmetric, and hence units in AI are not, in general, fully separable. Consequently, many AI units have complex response properties such as sensitivity to direction of motion, though most inseparable units are not strongly directionally selective. We show that for most neurons the lack of full separability stems from differences between the upward and downward spectral cross-sections, not from the temporal cross-sections; this places strong constraints on the neural inputs of these AI units

    Robust Spectro-Temporal Reverse Correlation for the Auditory System: Optimizing Stimulus Design

    Get PDF
    The spectro-temporal receptive field (STRF) is a functionaldescriptor of the linear processing of time-varying acoustic spectra by theauditory system. By cross-correlating sustained neuronal activity with the"dynamic spectrum" of a spectro-temporally rich stimulus ensemble, oneobtains an estimate of the STRF. In this paper, the relationship betweenthe spectro-temporal structure of any given stimulus and the quality ofthe STRF estimate is explored and exploited. Invoking the Fouriertheorem, arbitrary dynamic spectra are described as sums of basicsinusoidal components, i.e., "moving ripples." Accurate estimation isfound to be especially reliant on the prominence of components whosespectral and temporal characteristics are of relevance to the auditorylocus under study, and is sensitive to the phase relationships betweencomponents with identical temporal signatures.These and otherobservations have guided the development and use of stimuli withdeterministic dynamic spectra composed of the superposition of many"temporally orthogonal" moving ripples having a restricted, relevant rangeof spectral scales and temporal rates. The method, termedsum-of-ripples, is similar in spirit to the "white-noise approach," butenjoys the same practical advantages--which equate to faster and moreaccurate estimation--attributable to the time-domain sum-of-sinusoidsmethod previously employed in vision research. Application of the methodis exemplified with both modeled data and experimental data from ferretprimary auditory cortex (AI)

    Charged black holes in quadratic gravity

    Full text link
    Iterative solutions to fourth-order gravity describing static and electrically charged black holes are constructed. Obtained solutions are parametrized by two integration constants which are related to the electric charge and the exact location of the event horizon. Special emphasis is put on the extremal black holes. It is explicitly demonstrated that in the extremal limit, the exact location of the (degenerate) event horizon is given by \rp = |e|. Similarly to the classical Reissner-Nordstr\"om solution, the near-horizon geometry of the charged black holes in quadratic gravity, when expanded into the whole manifold, is simply that of Bertotti and Robinson. Similar considerations have been carried out for the boundary conditions of second type which employ the electric charge and the mass of the system as seen by a distant observer. The relations between results obtained within the framework of each method are briefly discussed

    Regular black holes in quadratic gravity

    Get PDF
    The first-order correction of the perturbative solution of the coupled equations of the quadratic gravity and nonlinear electrodynamics is constructed, with the zeroth-order solution coinciding with the ones given by Ay\'on-Beato and Garc{\'\i}a and by Bronnikov. It is shown that a simple generalization of the Bronnikov's electromagnetic Lagrangian leads to the solution expressible in terms of the polylogarithm functions. The solution is parametrized by two integration constants and depends on two free parameters. By the boundary conditions the integration constants are related to the charge and total mass of the system as seen by a distant observer, whereas the free parameters are adjusted to make the resultant line element regular at the center. It is argued that various curvature invariants are also regular there that strongly suggests the regularity of the spacetime. Despite the complexity of the problem the obtained solution can be studied analytically. The location of the event horizon of the black hole, its asymptotics and temperature are calculated. Special emphasis is put on the extremal configuration

    Arnowitt-Deser-Misner representation and Hamiltonian analysis of covariant renormalizable gravity

    Full text link
    We study the recently proposed Covariant Renormalizable Gravity (CRG), which aims to provide a generally covariant ultraviolet completion of general relativity. We obtain a space-time decomposed form --- an Arnowitt-Deser-Misner (ADM) representation --- of the CRG action. The action is found to contain time derivatives of the gravitational fields up to fourth order. Some ways to reduce the order of these time derivatives are considered. The resulting action is analyzed using the Hamiltonian formalism, which was originally adapted for constrained theories by Dirac. It is shown that the theory has a consistent set of constraints. It is, however, found that the theory exhibits four propagating physical degrees of freedom. This is one degree of freedom more than in Ho\v{r}ava-Lifshitz (HL) gravity and two more propagating modes than in general relativity. One extra physical degree of freedom has its origin in the higher order nature of the CRG action. The other extra propagating mode is a consequence of a projectability condition similarly as in HL gravity. Some additional gauge symmetry may need to be introduced in order to get rid of the extra gravitational degrees of freedom.Comment: 21 pages, LaTeX. A correction inserted to Hamiltonian formalism in Sec.

    Thickness dependence of the stability of the charge-ordered state in Pr0.5_{0.5}Ca0.5_{0.5}MnO3_{3} thin films

    Full text link
    Thin films of the charge-ordered (CO) compound Pr0.5_{0.5}Ca0.5_{0.5}MnO3_{3} have been deposited onto (100)-oriented SrTiO3_{3} substrates using the Pulsed Laser Deposition technique. Magnetization and transport properties are measured when the thickness of the film is varied. While the thinner films do not exhibit any temperature induced insulator-metal transition under an applied magnetic field up to 9T, for thickness larger than 1100\UNICODE{0xc5} a 5T magnetic field is sufficient to melt the CO state. For this latest film, we have measured the temperature-field phase diagram. Compared to the bulk material, it indicates that the robustness of the CO state in thin films is strongly depending on the strains and the thickness. We proposed an explanation based on the distortion of the cell of the film.Comment: 9 pages, 6 figures, submitted to Phys. Rev.
    corecore