697 research outputs found
Physical and electrical characteristics of EDM debris
AbstractIn EDM, debris plays a key role in the electrical conditions of the discharge gap prior to each spark. Despite this, analysis of debris at all length-scales has not yet been performed, and therefore the nature of debris produced by electrical discharge processes is not fully understood. In this study debris created by the machining of two electrode materials set as negative polarity, silicon and titanium carbide, was centrifuged and imaged using SEM and TEM. From this analysis it was shown that electrode debris is 1nm or lower and up to 10μm in size. Population analysis of the particle size distribution was used to inform an electric field model based on a lattice Boltzmann method framework, simulating the effect of the presence of such debris on the electric field strength. This method is shown to be able to capture the local variation of the electric field and predict qualitatively the correct trend of the electric field strength increasing against the debris concentration. Such data is important for prediction and control of discharge gap size, as well as understanding the impact of a build-up of debris on uncontrolled sparking
Formation mechanism of electrical discharge TiC-Fe composite coatings
Comparison of electric discharge (ED) processed single deposit and continuum TiC-Fe cermet coatings, formed from a sacrificial powder metallurgy TiC tool electrode at negative polarity, on 304 stainless steel, provided insight into the ED coating (EDC) formation mechanism. A deposit from a single spark event was dominated by TiC, phase separated from a ∼2 wt% Fe matrix, with strongly aligned grains and banded microstructure, indicative of solidification from the coating/substrate interface. Conversely, a continuum coating, subjected to ∼200 spark events per location, exhibited a more complex, banded microstructure, with a mixture of equiaxed and columnar TiC grains within a ∼30 wt% Fe-based matrix, along with some concentrations of carbon from the oil dielectric. It is considered that each sparking event remelts previously solidified coating material, with or without further TiC particle incorporation, leading to gradual TiC dilution and the development of a TiC-Fe composite coating with increasing levels of substrate material forming the matrix
An epitaxial model for heterogeneous nucleation on potent substrates
© The Minerals, Metals & Materials Society and ASM International 2012In this article, we present an epitaxial model for heterogeneous nucleation on potent substrates. It is proposed that heterogeneous nucleation of the solid phase (S) on a potent substrate (N) occurs by epitaxial growth of a pseudomorphic solid (PS) layer on the substrate surface under a critical undercooling (ΔT ). The PS layer with a coherent PS/N interface mimics the atomic arrangement of the substrate, giving rise to a linear increase of misfit strain energy with layer thickness. At a critical thickness (h ), elastic strain energy reaches a critical level, at which point, misfit dislocations are created to release the elastic strain energy in the PS layer. This converts the strained PS layer to a strainless solid (S), and changes the initial coherent PS/N interface into a semicoherent S/N interface. Beyond this critical thickness, further growth will be strainless, and solidification enters the growth stage. It is shown analytically that the lattice misfit (f) between the solid and the substrate has a strong influence on both h and ΔT ; h decreases; and ΔT increases with increasing lattice misfit. This epitaxial nucleation model will be used to explain qualitatively the generally accepted experimental findings on grain refinement in the literature and to analyze the general approaches to effective grain refinement.EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineerin
The disturbance decoupling problem with measurement feedback and stability for systems with direct feedthrough matrices
In this paper the known geometric results on the disturbance decoupling problem with measurement feedback and internal stability (DDPMS) are extended to include non-zero direct feedthrough matrices. Necessary and sufficient conditions for the solvability of the DDPMS are expressed in terms of three subspace inclusions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29145/1/0000187.pd
Nucleon Spin-Polarisabilities from Polarisation Observables in Low-Energy Deuteron Compton Scattering
We investigate the dependence of polarisation observables in elastic deuteron
Compton scattering below the pion production threshold on the spin-independent
and spin-dependent iso-scalar dipole polarisabilities of the nucleon. The
calculation uses Chiral Effective Field Theory with dynamical Delta(1232)
degrees of freedom in the Small Scale Expansion at next-to-leading order.
Resummation of the NN intermediate rescattering states and including the Delta
induces sizeable effects. The analysis considers cross-sections and the
analysing power of linearly polarised photons on an unpolarised target, and
cross-section differences and asymmetries of linearly and circularly polarised
beams on a vector-polarised deuteron. An intuitive argument helps one to
identify kinematics in which one or several polarisabilities do not contribute.
Some double-polarised observables are only sensitive to linear combinations of
two of the spin-polarisabilities, simplifying a multipole-analysis of the data.
Spin-polarisabilities can be extracted at photon energies \gtrsim 100 MeV,
after measurements at lower energies of \lesssim 70 MeV provide high-accuracy
determinations of the spin-independent ones. An interactive Mathematica 7.0
notebook of our findings is available from [email protected]: 30 pages LaTeX2e, including 22 figures as 66 .eps file embedded with
includegraphicx; three errors in initial submission corrected. This
submission includes ot the erratum to be published in EPJA (2012) and the
corrections in the tex
Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab
We present measurements of the differential cross section and Lambda recoil
polarization for the gamma p to K+ Lambda reaction made using the CLAS detector
at Jefferson Lab. These measurements cover the center-of-mass energy range from
1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles.
Independent analyses were performed using the K+ p pi- and K+ p (missing pi -)
final-state topologies; results from these analyses were found to exhibit good
agreement. These differential cross section measurements show excellent
agreement with previous CLAS and LEPS results and offer increased precision and
a 300 MeV increase in energy coverage. The recoil polarization data agree well
with previous results and offer a large increase in precision and a 500 MeV
extension in energy range. The increased center-of-mass energy range that these
data represent will allow for independent study of non-resonant K+ Lambda
photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure
Tensor Correlations Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV
over a wide kinematic range. We identified spectator correlated pp and pn
nucleon pairs using kinematic cuts and measured their relative and total
momentum distributions. This is the first measurement of the ratio of pp to pn
pairs as a function of pair total momentum, . For pair relative
momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low and
rises to approximately 0.5 at large . This shows the dominance of
tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR
Measurement of the nuclear multiplicity ratio for hadronization at CLAS
The influence of cold nuclear matter on lepto-production of hadrons in
semi-inclusive deep inelastic scattering is measured using the CLAS detector in
Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the
multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a
function of the fractional virtual photon energy transferred to the
and the transverse momentum squared of the . We find that the
multiplicity ratios for are reduced in the nuclear medium at high
and low , with a trend for the transverse momentum to be
broadened in the nucleus for large .Comment: Submitted to Phys. Lett.
Coherent Photoproduction of pi^+ from 3^He
We have measured the differential cross section for the
He reaction. This reaction was studied using
the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons
produced with the Hall-B bremsstrahlung tagging system in the energy range from
0.50 to 1.55 GeV were incident on a cryogenic liquid He target. The
differential cross sections for the He
reaction were measured as a function of photon-beam energy and pion-scattering
angle. Theoretical predictions to date cannot explain the large cross sections
except at backward angles, showing that additional components must be added to
the model.Comment: 11 pages, 16 figure
Demonstration of a novel technique to measure two-photon exchange effects in elastic scattering
The discrepancy between proton electromagnetic form factors extracted using
unpolarized and polarized scattering data is believed to be a consequence of
two-photon exchange (TPE) effects. However, the calculations of TPE corrections
have significant model dependence, and there is limited direct experimental
evidence for such corrections. We present the results of a new experimental
technique for making direct comparisons, which has the potential to
make precise measurements over a broad range in and scattering angles. We
use the Jefferson Lab electron beam and the Hall B photon tagger to generate a
clean but untagged photon beam. The photon beam impinges on a converter foil to
generate a mixed beam of electrons, positrons, and photons. A chicane is used
to separate and recombine the electron and positron beams while the photon beam
is stopped by a photon blocker. This provides a combined electron and positron
beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen
target. The large acceptance CLAS detector is used to identify and reconstruct
elastic scattering events, determining both the initial lepton energy and the
sign of the scattered lepton. The data were collected in two days with a
primary electron beam energy of only 3.3 GeV, limiting the data from this run
to smaller values of and scattering angle. Nonetheless, this measurement
yields a data sample for with statistics comparable to those of the
best previous measurements. We have shown that we can cleanly identify elastic
scattering events and correct for the difference in acceptance for electron and
positron scattering. The final ratio of positron to electron scattering:
for GeV and
- …