566 research outputs found

    Measurement Method for Urine Puddle Depth in Dairy Cow Houses as Input Variable for Ammonia Emission Modelling

    Get PDF
    Dairy cow houses are a major contributor to ammonia (NH3) emission in many European countries. To understand and predict NH3 emissions from cubicle dairy cow houses a mechanistic model was developed and a sensitivity analysis was performed to assess the contribution to NH3 emission of each input variable related to a single urine puddle. Results showed that NH3 emission was most sensitive for five puddle related input variables: pH, depth, initial urea concentration, area and temperature. Unfortunately, cow house data of these variables are scarce due to a lack of proper measurement methods. In this study we focused on a method to assess the urine puddle depth, which can vary between 0.10 mm and 2.00 mm. Our objective was to develop a measurement method for the urine puddle depth capable of assessing this variable on the floor in commercial dairy cow houses with a measurement uncertainty of at least 0.1 mm. In this study we compared two measurement methods being the balance method as golden standard and the ultrasonic method to use in practical dairy cow houses. We measured water puddles in an experimental setup under various conditions. We concluded that the ultrasonic sensor, attached to an X-Y table, can measure puddle depth and can determine depth differences between puddles both with a measurement uncertainty of 0.1 mm. The comparison between the balance and the ultrasonic method gave a mean difference of <0.01 mm (se = 0.006) in puddle depth; a Tukey mean-difference plot showed that the two methods were proportional and that there was no systematic bias

    Evidence for a different dispersion of the topological edge state of germanene at armchair and zigzag edges

    Get PDF
    Utilizing a tunneling spectroscopy approach based on the energy-dependent inverse decay length, our research unveils distinct dispersion characteristics of germanene's topological edge states. We observe a pronounced variance in Fermi velocity, with armchair edges exhibiting a velocity higher than zigzag edges by about an order of magnitude. This difference highlights the influence of edge termination on the energy-momentum dispersion relation of one-dimensional topological edge states in two-dimensional topological insulators, aligning with the theoretical framework of a Kane-Mele topological insulator.</p

    A New Recursion Relation for the 6j-Symbol

    Full text link
    The 6j-symbol is a fundamental object from the re-coupling theory of SU(2) representations. In the limit of large angular momenta, its asymptotics is known to be described by the geometry of a tetrahedron with quantized lengths. This article presents a new recursion formula for the square of the 6j-symbol. In the asymptotic regime, the new recursion is shown to characterize the closure of the relevant tetrahedron. Since the 6j-symbol is the basic building block of the Ponzano-Regge model for pure three-dimensional quantum gravity, we also discuss how to generalize the method to derive more general recursion relations on the full amplitudes.Comment: 10 pages, v2: title and introduction changed, paper re-structured; Annales Henri Poincare (2011

    Sampling Theorem and Discrete Fourier Transform on the Riemann Sphere

    Get PDF
    Using coherent-state techniques, we prove a sampling theorem for Majorana's (holomorphic) functions on the Riemann sphere and we provide an exact reconstruction formula as a convolution product of NN samples and a given reconstruction kernel (a sinc-type function). We also discuss the effect of over- and under-sampling. Sample points are roots of unity, a fact which allows explicit inversion formulas for resolution and overlapping kernel operators through the theory of Circulant Matrices and Rectangular Fourier Matrices. The case of band-limited functions on the Riemann sphere, with spins up to JJ, is also considered. The connection with the standard Euler angle picture, in terms of spherical harmonics, is established through a discrete Bargmann transform.Comment: 26 latex pages. Final version published in J. Fourier Anal. App

    Three-dimensional reconstruction of autologous vein bypass graft distal anastomoses imaged with magnetic resonance: clinical and research applications

    Get PDF
    AbstractHigh-resolution magnetic resonance imaging was combined with computational modeling to create focused three-dimensional reconstructions of the distal anastomotic region of autologous vein peripheral bypass grafts in a preliminary series of patients. Readily viewed on a personal computer or printed as hard copies, a detailed appreciation of in vivo postoperative features of the anastomosis is possible. These reconstructions are suitable for analysis of geometric features, including vessel caliber, tortuosity, anastomotic angles, and planarity. Some potential clinical and research applications of this technique are discussed

    Three-dimensional reconstruction of autologous vein bypass graft distal anastomoses imaged with magnetic resonance: clinical and research applications

    Get PDF
    AbstractHigh-resolution magnetic resonance imaging was combined with computational modeling to create focused three-dimensional reconstructions of the distal anastomotic region of autologous vein peripheral bypass grafts in a preliminary series of patients. Readily viewed on a personal computer or printed as hard copies, a detailed appreciation of in vivo postoperative features of the anastomosis is possible. These reconstructions are suitable for analysis of geometric features, including vessel caliber, tortuosity, anastomotic angles, and planarity. Some potential clinical and research applications of this technique are discussed

    Spinodal Decomposition in a Binary Polymer Mixture: Dynamic Self Consistent Field Theory and Monte Carlo Simulations

    Full text link
    We investigate how the dynamics of a single chain influences the kinetics of early stage phase separation in a symmetric binary polymer mixture. We consider quenches from the disordered phase into the region of spinodal instability. On a mean field level we approach this problem with two methods: a dynamical extension of the self consistent field theory for Gaussian chains, with the density variables evolving in time, and the method of the external potential dynamics where the effective external fields are propagated in time. Different wave vector dependencies of the kinetic coefficient are taken into account. These early stages of spinodal decomposition are also studied through Monte Carlo simulations employing the bond fluctuation model that maps the chains -- in our case with 64 effective segments -- on a coarse grained lattice. The results obtained through self consistent field calculations and Monte Carlo simulations can be compared because the time, length, and temperature scales are mapped onto each other through the diffusion constant, the chain extension, and the energy of mixing. The quantitative comparison of the relaxation rate of the global structure factor shows that a kinetic coefficient according to the Rouse model gives a much better agreement than a local, i.e. wave vector independent, kinetic factor. Including fluctuations in the self consistent field calculations leads to a shorter time span of spinodal behaviour and a reduction of the relaxation rate for smaller wave vectors and prevents the relaxation rate from becoming negative for larger values of the wave vector. This is also in agreement with the simulation results.Comment: Phys.Rev.E in prin
    • …
    corecore